「干货」让Python性能起飞的15个技巧,你知道几个呢?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了「干货」让Python性能起飞的15个技巧,你知道几个呢?相关的知识,希望对你有一定的参考价值。
参考技术A前言
Python 一直以来被大家所诟病的一点就是执行速度慢,但不可否认的是 Python 依然是我们学习和工作中的一大利器。本文总结了15个tips有助于提升 Python 执行速度、优化性能。
关于 Python 如何精确地测量程序的执行时间,这个问题看起来简单其实很复杂,因为程序的执行时间受到很多因素的影响,例如操作系统、Python 版本以及相关硬件(CPU 性能、内存读写速度)等。在同一台电脑上运行相同版本的语言时,上述因素就是确定的了,但是程序的睡眠时间依然是变化的,且电脑上正在运行的其他程序也会对实验有干扰,因此严格来说这就是实验不可重复。
我了解到的关于计时比较有代表性的两个库就是 time 和 timeit 。
其中, time 库中有 time() 、 perf_counter() 以及 process_time() 三个函数可用来计时(以秒为单位),加后缀 _ns 表示以纳秒计时(自 Python3.7 始)。在此之前还有 clock() 函数,但是在 Python3.3 之后被移除了。上述三者的区别如下:
与 time 库相比, timeit 有两个优点:
timeit.timeit(stmt=\'pass\', setup=\'pass\', timer= , number=1000000, globals=None) 参数说明:
本文所有的计时均采用 timeit 方法,且采用默认的执行次数一百万次。
为什么要执行一百万次呢?因为我们的测试程序很短,如果不执行这么多次的话,根本看不出差距。
Exp1:将字符串数组中的小写字母转为大写字母。
测试数组为 oldlist = [\'life\', \'is\', \'short\', \'i\', \'choose\', \'python\']。
方法一
方法二
方法一耗时 0.5267724000000005s ,方法二耗时 0.41462569999999843s ,性能提升 21.29%
Exp2:求两个 list 的交集。
测试数组:a = [1,2,3,4,5],b = [2,4,6,8,10]。
方法一
方法二
方法一耗时 0.9507264000000006s ,方法二耗时 0.6148200999999993s ,性能提升 35.33%
关于 set() 的语法: | 、 & 、 - 分别表示求并集、交集、差集。
我们可以通过多种方式对序列进行排序,但其实自己编写排序算法的方法有些得不偿失。因为内置的 sort() 或 sorted() 方法已经足够优秀了,且利用参数 key 可以实现不同的功能,非常灵活。二者的区别是 sort() 方法仅被定义在 list 中,而 sorted() 是全局方法对所有的可迭代序列都有效。
Exp3:分别使用快排和 sort() 方法对同一列表排序。
测试数组:lists = [2,1,4,3,0]。
方法一
方法二
方法一耗时 2.4796975000000003s ,方法二耗时 0.05551999999999424s ,性能提升 97.76%
顺带一提, sorted() 方法耗时 0.1339823999987857s 。
可以看出, sort() 作为 list 专属的排序方法还是很强的, sorted() 虽然比前者慢一点,但是胜在它“不挑食”,它对所有的可迭代序列都有效。
扩展 :如何定义 sort() 或 sorted() 方法的 key
1.通过 lambda 定义
2.通过 operator 定义
operator 的 itemgetter() 适用于普通数组排序, attrgetter() 适用于对象数组排序
3.通过 cmp_to_key() 定义,最为灵活
Exp4:统计字符串中每个字符出现的次数。
测试数组:sentence=\'life is short, i choose python\'。
方法一
方法二
方法一耗时 2.8105250000000055s ,方法二耗时 1.6317423000000062s ,性能提升 41.94%
列表推导(list comprehension)短小精悍。在小代码片段中,可能没有太大的区别。但是在大型开发中,它可以节省一些时间。
Exp5:对列表中的奇数求平方,偶数不变。
测试数组:oldlist = range(10)。
方法一
方法二
方法一耗时 1.5342976000000021s ,方法二耗时 1.4181957999999923s ,性能提升 7.57%
大多数人都习惯使用 + 来连接字符串。但其实,这种方法非常低效。因为, + 操作在每一步中都会创建一个新字符串并复制旧字符串。更好的方法是用 join() 来连接字符串。关于字符串的其他操作,也尽量使用内置函数,如 isalpha() 、 isdigit() 、 startswith() 、 endswith() 等。
Exp6:将字符串列表中的元素连接起来。
测试数组:oldlist = [\'life\', \'is\', \'short\', \'i\', \'choose\', \'python\']。
方法一
方法二
方法一耗时 0.27489080000000854s ,方法二耗时 0.08166570000000206s ,性能提升 70.29%
join 还有一个非常舒服的点,就是它可以指定连接的分隔符,举个例子
life//is//short//i//choose//python
Exp6:交换x,y的值。
测试数据:x, y = 100, 200。
方法一
方法二
方法一耗时 0.027853900000010867s ,方法二耗时 0.02398730000000171s ,性能提升 13.88%
在不知道确切的循环次数时,常规方法是使用 while True 进行无限循环,在代码块中判断是否满足循环终止条件。虽然这样做没有任何问题,但 while 1 的执行速度比 while True 更快。因为它是一种数值转换,可以更快地生成输出。
Exp8:分别用 while 1 和 while True 循环 100 次。
方法一
方法二
方法一耗时 3.679268300000004s ,方法二耗时 3.607847499999991s ,性能提升 1.94%
将文件存储在高速缓存中有助于快速恢复功能。Python 支持装饰器缓存,该缓存在内存中维护特定类型的缓存,以实现最佳软件驱动速度。我们使用 lru_cache 装饰器来为斐波那契函数提供缓存功能,在使用 fibonacci 递归函数时,存在大量的重复计算,例如 fibonacci(1) 、 fibonacci(2) 就运行了很多次。而在使用了 lru_cache 后,所有的重复计算只会执行一次,从而大大提高程序的执行效率。
Exp9:求斐波那契数列。
测试数据:fibonacci(7)。
方法一
方法二
方法一耗时 3.955014900000009s ,方法二耗时 0.05077979999998661s ,性能提升 98.72%
注意事项:
我被执行了(执行了两次 demo(1, 2) ,却只输出一次)
functools.lru_cache(maxsize=128, typed=False) 的两个可选参数:
点运算符( . )用来访问对象的属性或方法,这会引起程序使用 __getattribute__() 和 __getattr__() 进行字典查找,从而带来不必要的开销。尤其注意,在循环当中,更要减少点运算符的使用,应该将它移到循环外处理。
这启发我们应该尽量使用 from ... import ... 这种方式来导包,而不是在需要使用某方法时通过点运算符来获取。其实不光是点运算符,其他很多不必要的运算我们都尽量移到循环外处理。
Exp10:将字符串数组中的小写字母转为大写字母。
测试数组为 oldlist = [\'life\', \'is\', \'short\', \'i\', \'choose\', \'python\']。
方法一
方法二
方法一耗时 0.7235491999999795s ,方法二耗时 0.5475435999999831s ,性能提升 24.33%
当我们知道具体要循环多少次时,使用 for 循环比使用 while 循环更好。
Exp12:使用 for 和 while 分别循环 100 次。
方法一
方法二
方法一耗时 3.894683299999997s ,方法二耗时 1.0198077999999953s ,性能提升 73.82%
Numba 可以将 Python 函数编译码为机器码执行,大大提高代码执行速度,甚至可以接近 C 或 FORTRAN 的速度。它能和 Numpy 配合使用,在 for 循环中或存在大量计算时能显著地提高执行效率。
Exp12:求从 1 加到 100 的和。
方法一
方法二
方法一耗时 3.7199997000000167s ,方法二耗时 0.23769430000001535s ,性能提升 93.61%
矢量化是 NumPy 中的一种强大功能,可以将操作表达为在整个数组上而不是在各个元素上发生。这种用数组表达式替换显式循环的做法通常称为矢量化。
在 Python 中循环数组或任何数据结构时,会涉及很多开销。NumPy 中的向量化操作将内部循环委托给高度优化的 C 和 Fortran 函数,从而使 Python 代码更加快速。
Exp13:两个长度相同的序列逐元素相乘。
测试数组:a = [1,2,3,4,5], b = [2,4,6,8,10]
方法一
方法二
方法一耗时 0.6706845000000214s ,方法二耗时 0.3070132000000001s ,性能提升 54.22%
若要检查列表中是否包含某成员,通常使用 in 关键字更快。
Exp14:检查列表中是否包含某成员。
测试数组:lists = [\'life\', \'is\', \'short\', \'i\', \'choose\', \'python\']
方法一
方法二
方法一耗时 0.16038449999999216s ,方法二耗时 0.04139250000000061s ,性能提升 74.19%
itertools 是用来操作迭代器的一个模块,其函数主要可以分为三类:无限迭代器、有限迭代器、组合迭代器。
Exp15:返回列表的全排列。
测试数组:["Alice", "Bob", "Carol"]
方法一
方法二
方法一耗时 3.867292899999484s ,方法二耗时 0.3875405000007959s ,性能提升 89.98%
根据上面的测试数据,我绘制了下面这张实验结果图,可以更加直观的看出不同方法带来的性能差异。
从图中可以看出,大部分的技巧所带来的性能增幅还是比较可观的,但也有少部分技巧的增幅较小(例如编号5、7、8,其中,第 8 条的两种方法几乎没有差异)。
总结下来,我觉得其实就是下面这两条原则:
内置库函数由专业的开发人员编写并经过了多次测试,很多库函数的底层是用 C 语言开发的。因此,这些函数总体来说是非常高效的(比如 sort() 、 join() 等),自己编写的方法很难超越它们,还不如省省功夫,不要重复造轮子了,何况你造的轮子可能更差。所以,如果函数库中已经存在该函数,就直接拿来用。
有很多优秀的第三方库,它们的底层可能是用 C 和 Fortran 来实现的,像这样的库用起来绝对不会吃亏,比如前文提到的 Numpy 和 Numba,它们带来的提升都是非常惊人的。类似这样的库还有很多,比如Cython、PyPy等,这里我只是抛砖引玉。
原文链接:https://www.jb51.net/article/238190.htm
真香啊,让 Python 代码能力起飞的 24 个骚操作
大家好,我们知道 Python 加速技巧有很多。今天这篇文章,我给大家总结了24个,查缺补漏,每天学会一个新的小技巧。内容较长,建议收藏、关注。
部分 Python 技巧来自粉丝群小伙伴的分享,在此表示感谢。想加入的小伙伴,文末提给添加方式。
一、分析代码运行时间
第1式:测算代码运行时间
平凡方法
快捷方法(jupyter环境)
第2式:测算代码多次运行平均时间
平凡方法
快捷方法(jupyter环境)
第3式:按调用函数分析代码运行时间
平凡方法
快捷方法(jupyter环境)
第4式:按行分析代码运行时间
平凡方法
快捷方法(jupyter环境)
二、加速你的查找
第5式:用set而非list进行查找
低速方法
高速方法
第6式:用dict而非两个list进行匹配查找
低速方法
高速方法
三、加速你的循环
第7式:优先使用for循环而不是while循环
低速方法
高速方法
第8式:在循环体中避免重复计算
低速方法
高速方法
四、加速你的函数
第9式:用循环机制代替递归函数
低速方法
高速方法
第10式:用缓存机制加速递归函数
低速方法
高速方法
第11式:用numba加速Python函数
低速方法
高速方法
五、使用标准库函数进行加速
第12式:使用collections.Counter加速计数
低速方法
高速方法
第13式:使用collections.ChainMap加速字典合并
低速方法
高速方法
六,使用numpy向量化进行加速
第14式:使用np.array代替list
低速方法
高速方法
第15式:使用np.ufunc代替math.func
低速方法
高速方法
第16式:使用np.where代替if
低速方法
高速方法
七、加速你的Pandas
第17式:使用np.ufunc函数代替applymap
低速方法
高速方法
第18式:使用预分配存储代替动态扩容
低速方法
高速方法
第19式:使用csv****文件读写代替excel文件读写
低速方法
高速方法
第20式:使用pandas多进程工具pandarallel
低速方法
高速方法
八、使用Dask进行加速
第21式:使用dask加速dataframe
低速方法
高速方法
第22式:使用dask.delayed进行加速
低速方法
高速方法
九、应用多线程多进程加速
第23式:应用多线程加速IO密集型任务
低速方法
高速方法
第24式:应用多进程加速CPU密集型任务
低速方法
高速方法
推荐文章
- 上瘾了,最近又给公司撸了一个可视化大屏(附源码)
- 如此优雅,4款 Python 自动数据分析神器真香啊
- 梳理半月有余,精心准备了17张知识思维导图,这次要讲清统计学
- 年终汇总:20份可视化大屏模板,直接套用真香(文末附源码)
技术交流
欢迎转载、收藏、有所收获点赞支持一下!
目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友
- 方式①、发送如下图片至微信,长按识别,后台回复:加群;
- 方式②、添加微信号:dkl88191,备注:来自CSDN
- 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
以上是关于「干货」让Python性能起飞的15个技巧,你知道几个呢?的主要内容,如果未能解决你的问题,请参考以下文章