回归系数不显著怎么办

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了回归系数不显著怎么办相关的知识,希望对你有一定的参考价值。

我在做一个二元线性回归分析的时候最后计算结果时T检验第二个回归系数不显著,这个时候怎么办?
不显著的情况常见么?
急~~~~~

不显著的话可以看一下是不是自己哪一步错了,然后重新选择方程,变量,样本以及方法。下面是对这几个的详细介绍:
1、选方程。同样的问题,有时会有不同的模型。某篇经典文献用的是A模型,另外一个大牛可能用的是B模型。倒底哪个模型更好,取决于你对模型背后理论的信念。如果你更认可A模型背后的理论,就用A模型;同理对B模型也是如此。而选择不同的模型时,得到的实证结果往往会存在差别。有时候差别仅仅体现在系数的大小上,而有时候差别体现在系数的显著性上。
2、选变量。同一个财务变量,可能有多个指标能衡量。比如融资约束的度量,在文献经常出现的包括:公司规模、是否支付股利、产权性质、KZ指数、WW指数、信用评级、票据评级、利息偿付倍数、资产的可抵押能力、是否是集团公司等等。再比如掠夺风险的度量,包括:HHI、主营业务利润、价格-成本边际、超额价格-成本边际、勒纳指数、交叉弹性、熵指数、资本-劳动比偏离行业均值的绝对值、股票收益和行业组合收益的协方差、行业内最大四家企业的集中度等等。选择不同的指标衡量某个变量,得到的结果也存在差别。所以也可以采用这种思路来获得显著的结果。不过稳健性检验往往要求对某个无法精确度量的变量采取多种指标衡量,而且有时候还要检验这些指标的一致性(通过相关系数和交叉统计)。
3、选样本。数据处理的过程包含了选择样本的过程。删除ST、PT公司,删除交叉上市的公司,删除IPO当年的数据,删除资不抵债的公司,对离群值进行Winsor处理。样本处理也是五花八门,值得细细琢磨一番。
4、选方法。OLS、FE、GMM、3SLS、IV、Probit、DID,方法有很多,理论上可以改变不同的方法来做实证,但事实上每一种方法都有自己的限定条件和使用范围。所以选方法的可行性不太高。
参考技术A 这种情况是很常见的
出现这种情况的原因有很多种
但通常是两个变量间并不存在显著关系
也有可能是回归方程的形式有错
通常可以这样处理:令y=a+bln(x)(自变量取对数,通常能提高线性关系)
再检验一下效果本回答被提问者采纳

多元线性回归模型在1%的情况下显著是怎么看的

参考技术A 实在多元线性回归模型的计算公式里面看的。
多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。模型的拟合度是用R和R方来表示的,一般大于0.4就可以了;自变量的显著性是根据各个自变量系数后面的Sig值判断的,如果小于0.05可以说在95%的显著性水平下显著,小于0.01就可以说在99%的显著性水平下显著了。如果没有给出系数表,是看不到显著性如何的。
回归分析(regressionanalysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著。利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。

以上是关于回归系数不显著怎么办的主要内容,如果未能解决你的问题,请参考以下文章

回归方程显著性检验检验统计量怎么看

回归分析的结果怎么看?

怎么看回归分析的结果

spss线性回归分析结果怎么看

spss回归分析结果解读

spss进行线性回归分析时,相关系数都符合,但是显著性不符合,如何调整