乐观锁的实现
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了乐观锁的实现相关的知识,希望对你有一定的参考价值。
参考技术AHibernate 在其数据访问引擎中内置了乐观锁实现。如果不用考虑外部系统对数据库的更新操作,利用 Hibernate 提供的透明化乐观锁实现,将大大提升我们的生产力。
Hibernate 中可以通过 class 描述符的 optimistic-lock 属性结合 version
描述符指定。
现在,我们为之前示例中的 TUser 加上乐观锁机制。 首先为 TUser 的 class 描述符添加 optimistic-lock 属性:
<hibernate-mapping>
<class
name="org.hibernate.sample.TUser"
table="t_user"
dynamic-update="true"
dynamic-insert="true"
optimistic-lock="version"
>
……
</class>
</hibernate-mapping>
optimistic-lock 属性有如下可选取值:
Ø none
无乐观锁
Ø version
通过版本机制实现乐观锁
Ø dirty
通过检查发生变动过的属性实现乐观锁
Ø all
通过检查所有属性实现乐观锁
其中通过 version 实现的乐观锁机制是 Hibernate 官方推荐的乐观锁实现,同时也
是 Hibernate 中,目前唯一在数据对象脱离 Session 发生修改的情况下依然有效的锁机
制。因此,一般情况下,我们都选择 version 方式作为 Hibernate 乐观锁实现机制。 添加一个 Version 属性描述符
<hibernate-mapping>
<class
name="org.hibernate.sample.TUser"
table="t_user"
dynamic-update="true"
dynamic-insert="true"
optimistic-lock="version"
>
<id
name="id"
column="id"
type="java.lang.Integer"
>
<generator class="native">
</generator>
</id>
<version
column="version"
name="version"
type="java.lang.Integer"
/>
……
</class>
</hibernate-mapping>
注意 version 节点必须出现在 ID 节点之后。
这里我们声明了一个 version 属性,用于存放用户的版本信息,保存在 TUser 表的version 字段中。
此时如果我们尝试编写一段代码,更新 TUser 表中记录数据,如:
Criteria criteria = session.createCriteria(TUser.class);
criteria.add(Expression.eq("name","Erica"));
List userList = criteria.list();
TUser user =(TUser)userList.get(0);
Transaction tx = session.beginTransaction();
user.setUserType(1); // 更新 UserType 字段
tx.commit();
每次对 TUser 进行更新的时候,我们可以发现,数据库中的 version 都在递增。而如果我们尝试在 tx.commit 之前,启动另外一个 Session ,对名为 Erica 的用户进行操作,以模拟并发更新时的情形:
Session session= getSession();
Criteria criteria = session.createCriteria(TUser.class);
criteria.add(Expression.eq("name","Erica"));
Session session2 = getSession();
Criteria criteria2 = session2.createCriteria(TUser.class);
criteria2.add(Expression.eq("name","Erica"));
List userList = criteria.list();
List userList2 = criteria2.list();TUser user =(TUser)userList.get(0);
TUser user2 =(TUser)userList2.get(0);
Transaction tx = session.beginTransaction();
Transaction tx2 = session2.beginTransaction();
user2.setUserType(99);
tx2.commit();
user.setUserType(1);
tx.commit();
执行以上代码,代码将在 tx.commit() 处抛出 StaleObjectStateException 异常,并指出版本检查失败,当前事务正在试图提交一个过期数据。通过捕捉这个异常,我们就可以在乐观锁校验失败时进行相应处理。
乐观锁的一种实现方式——CAS
乐观锁的一种实现方式——CAS
在深入理解乐观锁与悲观锁一文中我们介绍过锁。本文在这篇文章的基础上,深入分析一下乐观锁的实现机制,介绍什么是CAS、CAS的应用以及CAS存在的问题等。
线程安全
众所周知,Java是多线程的。但是,Java对多线程的支持其实是一把双刃剑。一旦涉及到多个线程操作共享资源的情况时,处理不好就可能产生线程安全问题。线程安全性可能是非常复杂的,在没有充足的同步的情况下,多个线程中的操作执行顺序是不可预测的。
Java里面进行多线程通信的主要方式就是共享内存的方式,共享内存主要的关注点有两个:可见性和有序性。加上复合操作的原子性,我们可以认为Java的线程安全性问题主要关注点有3个:可见性、有序性和原子性。
Java内存模型(JMM)解决了可见性和有序性的问题,而锁解决了原子性的问题。这里不再详细介绍JMM及锁的其他相关知识。但是我们要讨论一个问题,那就是锁到底是不是有利无弊的?
锁存在的问题
Java在JDK1.5之前都是靠synchronized关键字保证同步的,这种通过使用一致的锁定协议来协调对共享状态的访问,可以确保无论哪个线程持有守护变量的锁,都采用独占的方式来访问这些变量。独占锁其实就是一种悲观锁,所以可以说synchronized是悲观锁。
悲观锁机制存在以下问题:
在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题。
一个线程持有锁会导致其它所有需要此锁的线程挂起。
如果一个优先级高的线程等待一个优先级低的线程释放锁会导致优先级倒置,引起性能风险。
而另一个更加有效的锁就是乐观锁。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。
与锁相比,volatile变量是一个更轻量级的同步机制,因为在使用这些变量时不会发生上下文切换和线程调度等操作,但是volatile不能解决原子性问题,因此当一个变量依赖旧值时就不能使用volatile变量。因此对于同步最终还是要回到锁机制上来。
那么,本文的重点来了,就是深入了解一下乐观锁的实现机制。
乐观锁
乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做。
上面提到的乐观锁的概念中其实已经阐述了他的具体实现细节:主要就是两个步骤:冲突检测和数据更新。其实现机制就是Compare and Swap(CAS)。
CAS
CAS是项乐观锁技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。
CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。无论哪种情况,它都会在 CAS 指令之前返回该位置的值。(在 CAS 的一些特殊情况下将仅返回 CAS 是否成功,而不提取当前值。)CAS 有效地说明了“我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。”这其实和乐观锁的冲突检查+数据更新的原理是一样的。
这里再强调一下,乐观锁是一种思想。CAS是这种思想的一种实现方式。
Java对CAS的支持
在JDK1.5 中新增java.util.concurrent(J.U.C)就是建立在CAS之上的。相对于对于synchronized这种阻塞算法,CAS是非阻塞算法的一种常见实现。所以J.U.C在性能上有了很大的提升。
我们以java.util.concurrent中的AtomicInteger为例,看一下在不使用锁的情况下是如何保证线程安全的。主要理解getAndIncrement方法,该方法的作用相当于 ++i 操作。
public class AtomicInteger extends Number implements java.io.Serializable {
private volatile int value;
public final int get() {
return value;
}
public final int getAndIncrement() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return current;
}
}
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
}
在没有锁的机制下需要字段value要借助volatile原语,保证线程间的数据是可见的。
这样在获取变量的值的时候才能直接读取。然后来看看++i是怎么做到的。 getAndIncrement采用了CAS操作,每次从内存中读取数据然后将此数据和+1后的结果进行CAS操作,如果成功就返回结果,否则重试直到成功为止。而compareAndSet利用JNI来完成CPU指令的操作。
ABA问题
CAS会导致“ABA问题”。
CAS算法实现一个重要前提需要取出内存中某时刻的数据,而在下时刻比较并替换,那么在这个时间差类会导致数据的变化。
比如说一个线程one从内存位置V中取出A,这时候另一个线程two也从内存中取出A,并且two进行了一些操作变成了B,然后two又将V位置的数据变成A,这时候线程one进行CAS操作发现内存中仍然是A,然后one操作成功。尽管线程one的CAS操作成功,但是不代表这个过程就是没有问题的。
那么,乐观锁是如何解决ABA问题的呢?
部分乐观锁的实现是通过version版本号的方式来解决ABA问题,乐观锁每次在执行数据的修改操作时,都会带上一个版本号,一旦版本号和数据的版本号一致就可以执行修改操作,否则就执行失败。因为每次操作的版本号都会随之增加,即使本次操作过程中数据被其他线程把数据从A改成B再改回A,那么在写操作进行的时候由于版本号与预期不一致也会执行失败。
参考资料
非阻塞同步算法与CAS(Compare and Swap)无锁算法
CAS原理分析
Java CAS 和ABA问题
以上是关于乐观锁的实现的主要内容,如果未能解决你的问题,请参考以下文章
Java并发问题--乐观锁与悲观锁以及乐观锁的一种实现方式-CAS