mask-rcnn训练完自己的数据集之后的测试demo

Posted ZealCV

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mask-rcnn训练完自己的数据集之后的测试demo相关的知识,希望对你有一定的参考价值。

import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt

import coco
import utils
import model as modellib
import visualize

class_names = ['BG', 'your class1', 'your class2', 'your class3']

class InferenceConfig(coco.CocoConfig):
    # Set batch size to 1 since we'll be running inference on
    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

    NUM_CLASSES = 1 + 3  # background + 3 class

config = InferenceConfig()
config.display()

# Root directory of the project
ROOT_DIR = os.getcwd()

# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")

# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")

# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))

# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", config=config , model_dir=MODEL_DIR)

# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_shapes_0002.h5")
# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)


# Run detection
results = model.detect([image], verbose=1)

# Visualize results
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'])



以上是关于mask-rcnn训练完自己的数据集之后的测试demo的主要内容,如果未能解决你的问题,请参考以下文章

mask-rcnn训练自己的数据集

mask-rcnn训练自己的数据集

图像语义分割标注工具labelme制作自己的数据集用于mask-rcnn训练

图像语义分割标注工具labelme制作自己的数据集用于mask-rcnn训练

Yolov5训练自己的数据集(详细完整版)

『计算机视觉』Mask-RCNN_训练网络其三:model准备