怎样使用OpenCV进行人脸识别

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了怎样使用OpenCV进行人脸识别相关的知识,希望对你有一定的参考价值。

网上帖子不是很多么,这个是我自己简单写的,注释的部分删了吧,就可以简单识别人脸了

#include <opencv2\\core\\core.hpp>
#include <opencv2\\imgproc\\imgproc.hpp>
#include <opencv2\\highgui\\highgui.hpp>
#include <opencv2\\video\\background_segm.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <iostream>

using namespace cv;
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
                    CascadeClassifier& nestedCascade,
                    double scale, bool tryflip );
//Mat imageresize(Mat &image, Size size);

/*int main()
    //VideoCapture cap(0);    //打开默认摄像头
    VideoCapture cap("F:/nihao.mp4");
        if(!cap.isOpened())
        
            return -1;
        
        Mat frame;
        Mat edges;

        CascadeClassifier cascade, nestedCascade;
        bool stop = false;
        //训练好的文件名称,放置在可执行文件同目录下
        cascade.load("haarcascade_frontalface_alt.xml");
        nestedCascade.load("haarcascade_eye_tree_eyeglasses.xml");
        while(!stop)
        
            cap>>frame;
            detectAndDraw( frame, cascade, nestedCascade,2,0 );
            if(waitKey(30) >=0)
                stop = true;
        
        return 0;
    
    */
int main()
    Mat image=imread("F:/quanjiafu.jpg");
    CascadeClassifier cascade,nestedcascade;
    cascade.load("F:/Opencv2.4.9/opencv/sources/data/haarcascades/haarcascade_frontalface_alt.xml");
    nestedcascade.load("F:/Opencv2.4.9/opencv/sources/data/haarcascades/haarcascade_eye_tree_eyeglasses.xml");
    detectAndDraw(image,cascade,nestedcascade,2,0);
    waitKey(0);
    return 0;

    void detectAndDraw( Mat& img, CascadeClassifier& cascade,
                        CascadeClassifier& nestedCascade,
                        double scale, bool tryflip )
    
        int i = 0;
        double t = 0;
        //建立用于存放人脸的向量容器
        vector<Rect> faces, faces2;
        //定义一些颜色,用来标示不同的人脸
        const static Scalar colors[] =  
            CV_RGB(0,0,255),
            CV_RGB(0,128,255),
            CV_RGB(0,255,255),
            CV_RGB(0,255,0),
            CV_RGB(255,128,0),
            CV_RGB(255,255,0),
            CV_RGB(255,0,0),
            CV_RGB(255,0,255) ;
        //建立缩小的图片,加快检测速度
        //nt cvRound (double value) 对一个double型的数进行四舍五入,并返回一个整型数!
        Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
        //转成灰度图像,Harr特征基于灰度图
        cvtColor( img, gray, CV_BGR2GRAY );
        //改变图像大小,使用双线性差值
        resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
        //变换后的图像进行直方图均值化处理
        equalizeHist( smallImg, smallImg );

        //程序开始和结束插入此函数获取时间,经过计算求得算法执行时间
        t = (double)cvGetTickCount();
        //检测人脸
        //detectMultiScale函数中smallImg表示的是要检测的输入图像为smallImg,faces表示检测到的人脸目标序列,1.1表示
        //每次图像尺寸减小的比例为1.1,2表示每一个目标至少要被检测到3次才算是真的目标(因为周围的像素和不同的窗口大
        //小都可以检测到人脸),CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30, 30)为目标的
        //最小最大尺寸
        cascade.detectMultiScale( smallImg, faces,
            1.1, 2, 0
            //|CV_HAAR_FIND_BIGGEST_OBJECT
            //|CV_HAAR_DO_ROUGH_SEARCH
            |CV_HAAR_SCALE_IMAGE
            ,
            Size(30, 30));
        //如果使能,翻转图像继续检测
        if( tryflip )
        
            flip(smallImg, smallImg, 1);
            cascade.detectMultiScale( smallImg, faces2,
                                     1.1, 2, 0
                                     //|CV_HAAR_FIND_BIGGEST_OBJECT
                                     //|CV_HAAR_DO_ROUGH_SEARCH
                                     |CV_HAAR_SCALE_IMAGE
                                     ,
                                     Size(30, 30) );
            for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
            
                faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
            
        
        t = (double)cvGetTickCount() - t;
     //   qDebug( "detection time = %g ms\\n", t/((double)cvGetTickFrequency()*1000.) );
        for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
        
            Mat smallImgROI;
            vector<Rect> nestedObjects;
            Point center;
            Scalar color = colors[i%8];
            int radius;

            double aspect_ratio = (double)r->width/r->height;
            if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
            
                //标示人脸时在缩小之前的图像上标示,所以这里根据缩放比例换算回去
                center.x = cvRound((r->x + r->width*0.5)*scale);
                center.y = cvRound((r->y + r->height*0.5)*scale);
                //Size s=Size(cvRound((r->width + r->height)*0.25*scale)*2,cvRound((r->width + r->height)*0.25*scale)*2);
                //Mat image=imread("F:/yaoming1.jpg");
                //Mat nimage=imageresize(image,s);
                //Mat imageROI=img(Rect(center.x-s.width/2,center.y-s.height/2,nimage.cols,nimage.rows));
                //addWeighted(imageROI,0.1,nimage,3,0.,imageROI);
                radius = cvRound((r->width + r->height)*0.25*scale);
                circle( img, center, radius, color,2, 8, 0 );
            
            else
                rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
                           cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
                           color, 3, 8, 0);
            if( nestedCascade.empty() )
                continue;
            smallImgROI = smallImg(*r);
            //同样方法检测人眼
            nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
                1.1, 2, 0
                //|CV_HAAR_FIND_BIGGEST_OBJECT
                //|CV_HAAR_DO_ROUGH_SEARCH
                //|CV_HAAR_DO_CANNY_PRUNING
                |CV_HAAR_SCALE_IMAGE
                ,
                Size(30, 30) );
            for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
            
                center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
                center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
                radius = cvRound((nr->width + nr->height)*0.25*scale);
                circle( img, center, radius, color, 3, 8, 0 );
            
        
        cv::imshow( "result", img );

//Mat imageresize(Mat& image,Size size)
//    Mat nimage=Mat(size,CV_32S);
//    resize(image,nimage,size);
//    return nimage;

参考技术A 从OpenCV2.4开始,加入了新的类FaceRecognizer,我们可以使用它便捷地进行人脸识别实验。本文既介绍代码使用,又介绍算法原理。(他写的源代码,我们可以在OpenCV的opencv\modules\contrib\doc\facerec\src下找到,当然也可以在他的github中找到,如果你想研究源码,自然可以去看看,不复杂)

目前支持的算法有
Eigenfaces特征脸createEigenFaceRecognizer()
Fisherfaces createFisherFaceRecognizer()
LocalBinary Patterns Histograms局部二值直方图 createLBPHFaceRecognizer()
你可以从网上找一些使用这些算法的实例,自己研究一下,希望能帮助到你,望采纳!
参考技术B   如何在一副图片中检测到人脸,这涉及到计算机图形学中一些非常复杂的计算,如果这些计算都靠程序员自己来编程,那么工作量就相当大。
  OpenCV全称是Open Computer Vision,是指开放的计算机视觉资源代码,它具有:统一的结构和功能定义、强大的图像和矩阵运算能力、方便灵活的接口等特点,是计算机视觉、图像处理和模式识别等方面进行二次开发的理想工具。
  它可以在各种版本的Windows下运行,也可以在Linux下运行。OpenCV的源代码是用C和C++所编写且完全开放的,因此具有很好的可移植性,在Microsoft Visual C++ 6.0、Microsoft Visual Studio 2003及Borland C++ BuilderX等环境下均可方便地使用OpenCV所提供的库来进行实际开发

怎么用opencv自带的分类器进行人脸识别

帮忙给出具体的步骤!

(安装opcv环境)
代码:
#include "cv.h"
#include "highgui.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>

#ifdef _EiC
#define WIN32
#endif

static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;

void detect_and_draw( IplImage* image );

const char* cascade_name =
"haarcascade_frontalface_alt.xml";
/* "haarcascade_profileface.xml";*/

int main( int argc, char** argv )

CvCapture* capture = 0;
IplImage *frame, *frame_copy = 0;
int optlen = strlen("--cascade=");
const char* input_name;

if( argc > 1 && strncmp( argv[1], "--cascade=", optlen ) == 0 )

cascade_name = argv[1] + optlen;
input_name = argc > 2 ? argv[2] : 0;

else

cascade_name = "../../data/haarcascades/haarcascade_frontalface_alt2.xml";
//opencv装好后haarcascade_frontalface_alt2.xml的路径,
//也可以把这个文件拷到你的工程文件夹下然后不用写路径名cascade_name= "haarcascade_frontalface_alt2.xml";
//或者cascade_name ="C:\\\\Program Files\\\\OpenCV\\\\data\\\\haarcascades\\\\haarcascade_frontalface_alt2.xml"
input_name = argc > 1 ? argv[1] : 0;


cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );

if( !cascade )

fprintf( stderr, "ERROR: Could not load classifier cascade\\n" );
fprintf( stderr,
"Usage: facedetect --cascade=\\"<cascade_path>\\" [filename|camera_index]\\n" );
return -1;

storage = cvCreateMemStorage(0);

if( !input_name || (isdigit(input_name[0]) && input_name[1] == \'\\0\') )
capture = cvCaptureFromCAM( !input_name ? 0 : input_name[0] - \'0\' );
else
capture = cvCaptureFromAVI( input_name );

cvNamedWindow( "result", 1 );

if( capture )

for(;;)

if( !cvGrabFrame( capture ))
break;
frame = cvRetrieveFrame( capture );
if( !frame )
break;
if( !frame_copy )
frame_copy = cvCreateImage( cvSize(frame->width,frame->height),
IPL_DEPTH_8U, frame->nChannels );
if( frame->origin == IPL_ORIGIN_TL )
cvCopy( frame, frame_copy, 0 );
else
cvFlip( frame, frame_copy, 0 );

detect_and_draw( frame_copy );

if( cvWaitKey( 10 ) >= 0 )
break;


cvReleaseImage( &frame_copy );
cvReleaseCapture( &capture );

else

const char* filename = input_name ? input_name : (char*)"lena.jpg";
IplImage* image = cvLoadImage( filename, 1 );

if( image )

detect_and_draw( image );
cvWaitKey(0);
cvReleaseImage( &image );

else

/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( filename, "rt" );
if( f )

char buf[1000+1];
while( fgets( buf, 1000, f ) )

int len = (int)strlen(buf);
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = \'\\0\';
image = cvLoadImage( buf, 1 );
if( image )

detect_and_draw( image );
cvWaitKey(0);
cvReleaseImage( &image );


fclose(f);





cvDestroyWindow("result");

return 0;


void detect_and_draw( IplImage* img )

static CvScalar colors[] =

0,0,255,
0,128,255,
0,255,255,
0,255,0,
255,128,0,
255,255,0,
255,0,0,
255,0,255
;

double scale = 1.3;
IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
IplImage* small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
cvRound (img->height/scale)),
8, 1 );
int i;

cvCvtColor( img, gray, CV_BGR2GRAY );
cvResize( gray, small_img, CV_INTER_LINEAR );
cvEqualizeHist( small_img, small_img );
cvClearMemStorage( storage );

if( cascade )

double t = (double)cvGetTickCount();
CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
1.1, 2, 0/*CV_HAAR_DO_CANNY_PRUNING*/,
cvSize(30, 30) );
t = (double)cvGetTickCount() - t;
printf( "detection time = %gms\\n", t/((double)cvGetTickFrequency()*1000.) );
for( i = 0; i < (faces ? faces->total : 0); i++ )

CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
CvPoint center;
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
cvCircle( img, center, radius, colors[i%8], 3, 8, 0 );



cvShowImage( "result", img );
cvReleaseImage( &gray );
cvReleaseImage( &small_img );


然后按照程序的位置(看代码)放入训练好的xml:
haarcascade_frontalface_alt.xml和haarcascade_frontalface_alt2.xml这些网上可以搜到,楼主找不到可以问我要(QQ:1207643343)
参考技术A 一轮小月亮,细小而洁白得犹如唯一的茉莉花
沉醉于你的摇曳,
窗前没有穿着印花棉布的新娘,只有灰尘灰色的手艺,
吝魂微启,不安地瞧见
砂石放在一只乌鸦的坟上
天空映记着你的彷徨哈哈本回答被提问者采纳

以上是关于怎样使用OpenCV进行人脸识别的主要内容,如果未能解决你的问题,请参考以下文章

怎样使用OpenCV进行人脸识别

怎样使用OpenCV进行人脸识别

怎样使用OpenCV进行人脸识别

OpenCV中LBPH人脸识别器识别人脸实战(附Python源码)

如何开发Java动态人脸识别

eigenface 怎样进行人脸识别