Sentinel与Hystrix的区别

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Sentinel与Hystrix的区别相关的知识,希望对你有一定的参考价值。

参考技术A Sentinel  是阿里中间件团队研发的面向分布式服务架构的轻量级高可用流量控制组件,最近正式开源。Sentinel 主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户保护服务的稳定性。大家可能会问:Sentinel 和之前常用的熔断降级库 Netflix Hystrix 有什么异同呢?本文将从多个角度对 Sentinel 和 Hystrix 进行对比,帮助大家进行技术选型。 

Hystrix 的关注点在于以隔离和熔断为主的容错机制,超时或者熔断的调用会快速失败,并可以提供fallback机制,而Sentinel 的侧重点在与:

多样化的流量控制

熔断升级

系统负载保护

实时监控和控制台

可以看到两者解决的问题还是有比较大的不同的,下面我们来分别对比一下

Hystrix 的资源模型设计上采用了命令模式,将对外部资源的调用和 fallback 逻辑封装成一个命令对象(HystrixCommand / HystrixObservableCommand),其底层的执行是基于 RxJava 实现的。每个 Command 创建时都要指定 commandKey 和 groupKey(用于区分资源)以及对应的隔离策略(线程池隔离 or 信号量隔离)。线程池隔离模式下需要配置线程池对应的参数(线程池名称、容量、排队超时等),然后 Command 就会在指定的线程池按照指定的容错策略执行;信号量隔离模式下需要配置最大并发数,执行 Command 时 Hystrix 就会限制其并发调用。

Sentinel 的设计则更为简单。相比 Hystrix Command 强依赖隔离规则,Sentinel 的资源定义与规则配置的耦合度更低。Hystrix 的 Command 强依赖于隔离规则配置的原因是隔离规则会直接影响 Command 的执行。在执行的时候 Hystrix 会解析 Command 的隔离规则来创建 RxJava Scheduler 并在其上调度执行,若是线程池模式则 Scheduler 底层的线程池为配置的线程池,若是信号量模式则简单包装成当前线程执行的 Scheduler。而 Sentinel 并不指定执行模型,也不关注应用是如何执行的。Sentinel 的原则非常简单:根据对应资源配置的规则来为资源执行相应的限流/降级/负载保护策略。在 Sentinel 中资源定义和规则配置是分离的。用户先通过 Sentinel API 给对应的业务逻辑定义资源(埋点),然后可以在需要的时候配置规则。埋点方式有两种:

try-catch 方式(通过 SphU.entry(...)),用户在 catch 块中执行异常处理 / fallback

if-else 方式(通过 SphO.entry(...)),当返回 false 时执行异常处理 / fallback

Sentinel 提供 多样化的规则配置方式 。除了直接通过 loadRules API 将规则注册到内存态之外,用户还可以注册各种外部数据源来提供动态的规则。用户可以根据系统当前的实时情况去动态地变更规则配置,数据源会将变更推送至 Sentinel 并即时生效。

隔离是 Hystrix 的核心功能之一。Hystrix 提供两种隔离策略:线程池隔离(Bulkhead Pattern)和信号量隔离,其中最推荐也是最常用的是线程池隔离。Hystrix 的线程池隔离针对不同的资源分别创建不同的线程池,不同服务调用都发生在不同的线程池中,在线程池排队、超时等阻塞情况时可以快速失败,并可以提供 fallback 机制。线程池隔离的好处是隔离度比较高,可以针对某个资源的线程池去进行处理而不影响其它资源,但是代价就是线程上下文切换的 overhead 比较大,特别是对低延时的调用有比较大的影响。

但是,实际情况下,线程池隔离并没有带来非常多的好处。首先就是过多的线程池会非常影响性能。考虑这样一个场景,在 Tomcat 之类的 Servlet 容器使用 Hystrix,本身 Tomcat 自身的线程数目就非常多了(可能到几十或一百多),如果加上 Hystrix 为各个资源创建的线程池,总共线程数目会非常多(几百个线程),这样上下文切换会有非常大的损耗。另外,线程池模式比较彻底的隔离性使得 Hystrix 可以针对不同资源线程池的排队、超时情况分别进行处理,但这其实是超时熔断和流量控制要解决的问题,如果组件具备了超时熔断和流量控制的能力,线程池隔离就显得没有那么必要了。

Sentinel 可以通过并发线程数模式的流量控制来提供信号量隔离的功能。这样的隔离非常轻量级,仅限制对某个资源调用的并发数,而不是显式地去创建线程池,所以 overhead 比较小,但是效果不错。并且结合基于响应时间的熔断降级模式,可以在不稳定资源的平均响应时间比较高的时候自动降级,防止过多的慢调用占满并发数,影响整个系统。而 Hystrix 的信号量隔离比较简单,无法对慢调用自动进行降级,只能等待客户端自己超时,因此仍然可能会出现级联阻塞的情况。

熔断降级对比 sentinel和Hystrix的熔断降级本质都是基于熔断器模式

 Sentinel 与 Hystrix 都支持基于失败比率(异常比率) 的熔断降级 此时所有对该资源的调用都会被 block,直到过了指定的时间窗口后才启发性地恢复。上面提到过,Sentinel 还支持基于平均响应时间的熔断降级,可以在服务响应时间持续飙高的时候自动熔断,拒绝掉更多的请求,直到一段时间后才恢复。这样可以防止调用非常慢造成级联阻塞的情况。

实时指标统计实现对比

Hystrix 和 Sentinel 的实时指标数据统计实现都是基于滑动窗口的。Hystrix 1.5 之前的版本是通过环形数组实现的滑动窗口,通过锁配合 CAS 的操作对每个桶的统计信息进行更新。Hystrix 1.5 开始对实时指标统计的实现进行了重构,将指标统计数据结构抽象成了响应式流(reactive stream)的形式,方便消费者去利用指标信息。同时底层改造成了基于 RxJava 的事件驱动模式,在服务调用成功/失败/超时的时候发布相应的事件,通过一系列的变换和聚合最终得到实时的指标统计数据流,可以被熔断器或 Dashboard 消费。

Sentinel 目前抽象出了 Metric 指标统计接口,底层可以有不同的实现,目前默认的实现是基于LeapArray的滑动窗口,后续根据需要可能会引入 reactive stream 等实现。

Sentinel 的特色

除了之前提到的两者的共同特性之外,Sentinel 还提供以下的特色功能:

轻量级,高性能 

Sentinel 作为一个功能完备的高可用流量管控组件,其核心sentinel-core没有任何多余依赖,打包后只有不到200K,非常轻量级,开发者可以放心引入 sentinel-core 而不需担心依赖问题 ,同时sentinel提供多种扩展点,用户可以很方便的根据需求去进行扩展,而且无缝切换到Sentinel中

引入Sentinel带来的性能损耗非常小。只有在业务单机量级超过 25W QPS 的时候才会有一些显著的影响(5% - 10% 左右),单机 QPS 不太大的时候损耗几乎可以忽略不计。

流量控制

Sentinel可以针对不同的调用 以不同的运行指标 如 QPS、并发调用数、系统负载等)为基准,对资源调用进行流量控制,将随机的请求调整成合适的形状。

Sentinel 支持多样化的流量整形策略,在 QPS 过高的时候可以自动将流量调整成合适的形状。常用的有:

直接拒绝模式:即超出的请求直接拒绝。

慢启动预热模式: 当流量激增的时候,控制流量通过的速率,让通过的流量缓缓的增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。

匀速器模式 利用 Leaky Bucket 算法实现的匀速模式,严格控制了请求通过的时间间隔,同时堆积的请求将会排队,超过超时时长的请求直接被拒绝。

Sentinel   Hystrix

隔离策略基于并发数线程池隔离/信号量隔离

熔断降级策略基于响应时间或失败比率基于失败比率

实时指标实现滑动窗口滑动窗口(基于 RxJava)

规则配置支持多种数据源支持多种数据源

扩展性多个扩展点插件的形式

基于注解的支持即将发布支持

调用链路信息支持同步调用不支持

限流基于 QPS / 并发数,支持基于调用关系的限流不支持

流量整形支持慢启动、匀速器模式不支持

系统负载保护支持不支持

实时监控 API各式各样较为简单

控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善

常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

文章出处 https://blog.csdn.net/educast/article/details/88735339

hystrix与sentinel的区别你懂没?

hystrix与sentinel的区别以及选型对比

1. hystrix具有的功能

  • 线程池隔离/信号量隔离 Sentinel 不支持线程池隔离;信号量隔离对应 Sentinel 中的线程数限流。

  • 熔断器 Sentinel 支持按平均响应时间、异常比率、异常数来进行熔断降级。

  • Command 创建 直接使用 Sentinel SphU API 定义资源即可,资源定义与规则配置分离。

  • 规则配置 在 Sentinel 中可通过 API 硬编码配置规则,也支持多种动态规则源

  • 注解支持 Sentinel 也提供注解支持

  • 开源框架支持 Sentinel 提供 Servlet、Dubbo、Spring Cloud、gRPC 的适配模块,开箱即用;若之前使用 Spring Cloud Netflix,可迁移至 Spring Cloud Alibaba

2. 功能对比:

功能

Sentinel

Hystrix

resilience4j

隔离策略

信号量隔离(并发线程数限流)

线程池隔离/信号量隔离

信号量隔离

熔断降级策略

基于响应时间、异常比率、异常数

基于异常比率

基于异常比率、响应时间

实时统计实现

滑动窗口(LeapArray)

滑动窗口(基于 RxJava)

Ring Bit Buffer

动态规则配置

支持多种数据源

支持多种数据源

有限支持

扩展性

多个扩展点

插件的形式

接口的形式

基于注解的支持

支持

支持

支持

限流

基于 QPS,支持基于调用关系的限流

有限的支持

Rate Limiter

流量整形

支持预热模式、匀速器模式、预热排队模式(流量规则处可配置)

不支持

简单的 Rate Limiter 模式

系统自适应保护

支持

不支持

不支持

控制台

提供开箱即用的控制台,可配置规则、查看秒级监控、机器发现等

简单的监控查看

不提供控制台,可对接其它监控系统


以上是关于Sentinel与Hystrix的区别的主要内容,如果未能解决你的问题,请参考以下文章

Sentinel简介

Sentinel简介

sentinel入门相关笔记(springcloud熔断器)

sentinel入门相关笔记(springcloud熔断器)

Day440.Sentinel -谷粒商城

Day440.Sentinel -谷粒商城