Python中字典和集合的区别与联系
Posted 及时行樂_
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python中字典和集合的区别与联系相关的知识,希望对你有一定的参考价值。
字典(dict)和集合(set)在 Python 被广泛使用,并且性能进行了高度优化,其重要性不言而喻。
字典和集合基础
字典是一系列由键(key)和值(value)配对组成的元素的集合。python3.7之后,字典底层是2个数组,一个为一维数组,存放hash(key)取余后的值作为数组的索引,对应索引位置存放键值对在二维数组的索引位置。因此二维数组是一个有序的数组。
相比于列表和元组,字典的性能更优,特别是对于查找、添加和删除操作,字典都能在常数时间复杂度内完成。
而集合和字典基本相同,唯一的区别,就是集合没有键和值的配对,是一系列无序的、唯一的元素组合。
字典和集合的创建方式通常有以下几种:
d1 = 'name': 'jason', 'age': 20, 'gender': 'male'
d2 = dict('name': 'jason', 'age': 20, 'gender': 'male')
d3 = dict([('name', 'jason'), ('age', 20), ('gender', 'male')])
d4 = dict(name='jason', age=20, gender='male')
d1 == d2 == d3 ==d4
True
s1 = 1, 2, 3
s2 = set([1, 2, 3])
s1 == s2
True
Python 中字典和集合,无论是键还是值,都可以是混合类型。
s = 1, 'hello', 5.0
字典和集合的访问
字典访问可以直接索引键,如果不存在,就会抛出异常
d = 'name': 'jason', 'age': 20
d['name']
'jason'
d['location']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'location'
也可以使用 get(key, default) 函数来进行索引。如果键不存在,调用 get() 函数可以返回一个默认值。
d = 'name': 'jason', 'age': 20
d.get('name')
'jason'
d.get('location', 'null')
'null'
集合并不支持索引操作,因为集合本质上是一个哈希表,和列表不一样。所以,下面这样的操作是错误的,Python 会抛出异常。
s = 1, 2, 3
s[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'set' object does not support indexing
要判断一个元素在不在字典或集合内,我们可以用 value in dict/set 来判断(对于字典,只能使用key in dict 来判断)。
s = 1, 2, 3
1 in s
True
10 in s
False
d = 'name': 'jason', 'age': 20
'name' in d
True
'location' in d
False
增加、删除、更新
除了创建和访问,字典和集合也同样支持增加、删除、更新等操作。
d = 'name': 'jason', 'age': 20
d['gender'] = 'male' # 增加元素对'gender': 'male'
d['dob'] = '1999-02-01' # 增加元素对'dob': '1999-02-01'
d
'name': 'jason', 'age': 20, 'gender': 'male', 'dob': '1999-02-01'
d['dob'] = '1998-01-01' # 更新键'dob'对应的值
d.pop('dob') # 删除键为'dob'的元素对
'1998-01-01'
d
'name': 'jason', 'age': 20, 'gender': 'male'
s = 1, 2, 3
s.add(4) # 增加元素4到集合
s
1, 2, 3, 4
s.remove(4) # 从集合中删除元素4
s
1, 2, 3
注:集合的 pop() 操作是删除集合中最后一个元素,可是集合本身是无序的,你无法知道会删除哪个元素,因此这个操作得谨慎使用。
排序
对于字典,我们通常会根据键或值,进行升序或降序排序。会返回一个列表,列表中的每个元素,是由原字典的键和值组成的元组。
d = 'b': 1, 'a': 2, 'c': 10
d_sorted_by_key = sorted(d.items(), key=lambda x: x[0]) # 根据字典键的升序排序
d_sorted_by_value = sorted(d.items(), key=lambda x: x[1]) # 根据字典值的升序排序
d_sorted_by_key
[('a', 2), ('b', 1), ('c', 10)]
d_sorted_by_value
[('b', 1), ('a', 2), ('c', 10)]
而对于集合,其排序和前面讲过的列表、元组很类似,直接调用 sorted(set) 即可,结果会返回一个排好序的列表。
s = 3, 4, 2, 1
sorted(s) # 对集合的元素进行升序排序
[1, 2, 3, 4]
字典和集合的性能
字典和集合是进行过性能高度优化的数据结构,特别是对于查找、添加和删除操作。
比如电商企业的后台,存储了每件产品的 ID、名称和价格。现在的需求是,给定某件商品的 ID,我们要找出其价格。
如果我们用列表来存储这些数据结构,并进行查找,相应的代码如下:
def find_product_price(products, product_id):
for id, price in products:
if id == product_id:
return price
return None
products = [
(143121312, 100),
(432314553, 30),
(32421912367, 150)
]
print('The price of product 432314553 is '.format(find_product_price(products, 432314553)))
# 输出
The price of product 432314553 is 30
假设列表有 n 个元素,而查找的过程要遍历列表,那么时间复杂度就为 O ( n ) O(n) O(n)。即使我们先对列表进行排序,然后使用二分查找,也会需要 O ( log n ) O(\\log n) O(logn)的时间复杂度,更何况,列表的排序还需要 O ( n log n ) O(n\\log n) O(nlogn)的时间。
如果我们用字典来存储这些数据,那么查找就会非常便捷高效,只需 O ( 1 ) O(1) O(1)的时间复杂度就可以完成。原因也很简单,刚刚提到过的,字典的内部组成是一张哈希表,你可以直接通过键的哈希值,找到其对应的值。
products =
143121312: 100,
432314553: 30,
32421912367: 150
print('The price of product 432314553 is '.format(products[432314553]))
# 输出
The price of product 432314553 is 30
现在需求变成,要找出这些商品有多少种不同的价格。我们还用同样的方法来比较一下。
如果还是选择使用列表,对应的代码如下,其中,A 和 B 是两层循环。同样假设原始列表有 n n n个元素,那么,在最差情况下,需要 O ( n 2 ) O(n^2) O(n2)的时间复杂度。
# list version
def find_unique_price_using_list(products):
unique_price_list = []
for _, price in products: # A
if price not in unique_price_list: #B
unique_price_list.append(price)
return len(unique_price_list)
products = [
(143121312, 100),
(432314553, 30),
(32421912367, 150),
(937153201, 30)
]
print('number of unique price is: '.format(find_unique_price_using_list(products)))
# 输出
number of unique price is: 3
如果我们选择使用集合这个数据结构,由于集合是高度优化的哈希表,里面元素不能重复,并且其添加和查找操作只需 O ( 1 ) O(1) O(1)的复杂度,那么,总的时间复杂度就只有 O ( n ) O(n) O(n)。
# set version
def find_unique_price_using_set(products):
unique_price_set = set()
for _, price in products:
unique_price_set.add(price)
return len(unique_price_set)
products = [
(143121312, 100),
(432314553, 30),
(32421912367, 150),
(937153201, 30)
]
print('number of unique price is: '.format(find_unique_price_using_set(products)))
# 输出
number of unique price is: 3
下面的代码,初始化了含有 100,000 个元素的产品,并分别计算了使用列表和集合来统计产品价格数量的运行时间:
import time
id = [x for x in range(0, 100000)]
price = [x for x in range(200000, 300000)]
products = list(zip(id, price))
# 计算列表版本的时间
start_using_list = time.perf_counter()
find_unique_price_using_list(products)
end_using_list = time.perf_counter()
print("time elapse using list: ".format(end_using_list - start_using_list))
## 输出
time elapse using list: 41.61519479751587
# 计算集合版本的时间
start_using_set = time.perf_counter()
find_unique_price_using_set(products)
end_using_set = time.perf_counter()
print("time elapse using set: ".format(end_using_set - start_using_set))
# 输出
time elapse using set: 0.008238077163696289
字典和集合的工作原理
不同于其他数据结构,字典和集合的内部结构都是一张哈希表。
对于字典而言,这张表存储了哈希值(hash)、键和值这 3 个元素。
而对集合来说,区别就是哈希表内没有键和值的配对,只有单一的元素了。
老版本 Python 的哈希表结构如下所示:
--+-------------------------------+
| 哈希值(hash) 键(key) 值(value)
--+-------------------------------+
0 | hash0 key0 value0
--+-------------------------------+
1 | hash1 key1 value1
--+-------------------------------+
2 | hash2 key2 value2
--+-------------------------------+
. | ...
__+_______________________________+
不难想象,随着哈希表的扩张,它会变得越来越稀疏。
'name': 'mike', 'dob': '1999-01-01', 'gender': 'male'
它会存储为类似下面的形式:
entries = [
['--', '--', '--']
[-230273521, 'dob', '1999-01-01'],
['--', '--', '--'],
['--', '--', '--'],
[1231236123, 'name', 'mike'],
['--', '--', '--'],
[9371539127, 'gender', 'male']
]
为了提高存储空间的利用率,现在的哈希表除了字典本身的结构,会把索引和哈希值、键、值单独分开,也就是下面这样新的结构:
Indices
----------------------------------------------------
None | index | None | None | index | None | index ...
----------------------------------------------------
Entries
--------------------
hash0 key0 value0
---------------------
hash1 key1 value1
---------------------
hash2 key2 value2
---------------------
...
---------------------
那么,刚刚的这个例子,在新的哈希表结构下的存储形式,就会变成下面这样:
indices = [None, 1, None, None, 0, None, 2]
entries = [
[1231236123, 'name', 'mike'],
[-230273521, 'dob', '1999-01-01'],
[9371539127, 'gender', 'male']
]
插入操作
每次向字典或集合插入一个元素时,Python 会首先计算键的哈希值(hash(key)),再和 mask = PyDicMinSize - 1 做与操作,计算这个元素应该插入哈希表的位置 index = hash(key) & mask。如果哈希表中此位置是空的,那么这个元素就会被插入其中。
而如果此位置已被占用,Python便会比较两个元素的哈希值和键是否相等。
- 若两者都相等,则表明这个元素已经存在,如果值不同,则更新值。
- 若两者中有一个不相等,这种情况我们通常称为哈希冲突(hash collision),意思是两个元素的键不相等,但是哈希值相等。这种情况下,Python便会继续寻找表中空余的位置,直到找到位置为止。
值得一提的是,通常来说,遇到这种情况,最简单的方式是线性寻找,即从这个位置开始,挨个往后寻找空位。当然,Python内部对此进行了优化,让这个步骤更加高效。(在数据结构对应的章节也有了解,可以0,1,2,3也可以0,1,-1,还可以0,1,4)
查找操作
和前面的插入操作类似,Python 会根据哈希值,找到其应该处于的位置;然后,比较哈希表这个位置中元素的哈希值和键,与需要查找的元素是否相等。如果相等,则直接返回;如果不等,则继续查找,直到找到空位或者抛出异常为止。
删除操作
对于删除操作,Python 会暂时对这个位置的元素,赋于一个特殊的值,等到重新调整哈希表的大小时,再将其删除。
不难理解,哈希冲突的发生,往往会降低字典和集合操作的速度。因此,为了保证其高效性,字典和集合内的哈希表,通常会保证其至少留有 1/3 的剩余空间。随着元素的不停插入,当剩余空间小于 1/3 时,Python 会重新获取更大的内存空间,扩充哈希表。不过,这种情况下,表内所有的元素位置都会被重新排放。
虽然哈希冲突和哈
以上是关于Python中字典和集合的区别与联系的主要内容,如果未能解决你的问题,请参考以下文章