算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )
Posted 韩曙亮
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )相关的知识,希望对你有一定的参考价值。
文章目录
LeetCode 62.不同路径 : https://leetcode.cn/problems/unique-paths
一个机器人位于一个 m x n 网格 的 左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能 向下或者向右 移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
一、问题分析
动态规划 可以解决 三类问题 :
- 求最值 : 最大值 , 最小值 等 ;
- 大规模问题的结果 由 小规模问题 的计算结果 相加
- 大规模问题的结果 由 小规模问题 的计算结果 取最大值
- 大规模问题的结果 由 小规模问题 的计算结果 取最小值
- 可行性 : 是否可行 ;
- 大规模问题的结果 由 小规模问题 的计算结果 必须全部可行
- 大规模问题的结果 由 小规模问题 的计算结果 只要有一个可行即可
- 大规模问题的结果 由 小规模问题 的计算结果 没有可行结果
- 方案数 :
- 大规模问题的结果 由 小规模问题 的计算结果 可行方案总数
在本示例中 , 使用动态规划 求的是 可行方案总数 ;
在 m x n 网格中 , 只能向右走 或 向下走 ;
将 大规模问题 拆解成 小规模问题 时 , 其依赖关系 是有 方向性的 ;
二、自顶向下的动态规划
1、动态规划状态 State
使用 二维数组 dp 保存 动态规划的 状态 State ,
dp[i][j] 表示 从 (0, 0) 位置出发 , 到 (i, j) 位置的方案总数 ;
2、动态规划初始化 Initialize
在 初始位置 (0 , 0) 位置 的方案数 , 肯定为 1 , 因此有 dp[0][0] = 1 ;
最左侧的一列 , 只能向下走 , 其方案数也为 1 , 因此有 dp[i][0] = 1 ;
最上方的一排 , 只能向右走 , 其方案数也为 1 , 因此有 dp[0][j] = 1 ;
3、动态规划方程 Function
由于 运动时 , 只能 向右 或 向下 走 , 走到 (i , j) 只能是从 左边 (i - 1, j) 或 上边 (i , j-1) 位置走过来 ,
这里可以得到依赖关系 : dp[i][j] = dp[i-1][j] + dp[i][j-1]
4、动态规划答案 Answer
最终的 从 左上角 (0 , 0) 位置 走到 右下角 (m , n) 位置 的方案总数就是 状态 State 中的 dp[m - 1][n - 1] 数值 ;
5、代码示例
代码示例 :
public class Solution
/**
* 不同路径
* @param m 网格行数
* @param n 网格列数
* @return
*/
public int uniquePaths(int m, int n)
// 1. 动态规划状态 State
// dp[i][j] 表示 从 (0, 0) 位置出发 , 到 (i, j) 位置的方案总数 ;
int[][] dp = new int[m][n];
// 2. 动态规划初始化 Initialize
// 最左侧的一列 , 只能向下走 , 其方案数也为 1 , 因此有 dp[i][0] = 1 ;
for (int i = 0; i < m; ++i)
dp[i][0] = 1;
// 最上方的一排 , 只能向右走 , 其方案数也为 1 , 因此有 dp[0][j] = 1 ;
for (int j = 0; j < n; ++j)
dp[0][j] = 1;
// 3. 动态规划方程 Function
// 运动时 , 只能 向右 或 向下 走 ,
// 走到 (i , j) 只能是从 左边 (i - 1, j) 或 上边 (i , j-1) 位置走过来 ,
// 这里可以得到依赖关系 : dp[i][j] = dp[i-1][j] + dp[i][j-1]
for (int i = 1; i < m; ++i)
for (int j = 1; j < n; ++j)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
// 4. 动态规划答案 Answer
// 最终的 从 左上角 (0 , 0) 位置 走到 右下角 (m , n) 位置
// 的方案总数就是 状态 State 中的 dp[m - 1][n - 1] 数值 ;
return dp[m - 1][n - 1];
public static void main(String[] args)
int minTotal = new Solution().uniquePaths(3, 7);
System.out.println("3 x 7 网格方案数为 : " + minTotal);
执行结果 :
3 x 7 网格方案数为 : 28
三、自底向上的动态规划
1、动态规划状态 State
使用 二维数组 dp 保存 动态规划的 状态 State ,
dp[i][j] 表示 从 (i , j) 位置出发 , 到 (m - 1, n - 1) 位置的方案总数 ;
2、动态规划初始化 Initialize
在 终点位置 (m - 1, n - 1) 位置 到 (m - 1, n - 1) 位置的方案总数 , 肯定为 1 , 因此有 dp[m - 1][n - 1] = 1 ;
最右侧的一列 , 只能向下走 , 到 (m - 1, n - 1) 位置的方案总数 也为 1 , 因此有 dp[i][n - 1] = 1 ;
最下方的一排 , 只能向右走 , 其 到 (m - 1, n - 1) 位置的方案总数 方案数也为 1 , 因此有 dp[m - 1][j] = 1 ;
3、动态规划方程 Function
由于 运动时 , 只能 向右 或 向下 走 , 从 (i , j) 走到 ( m - 1 , n - 1 ) 只能是走 右边 (i + 1, j) 或 下边 (i , j + 1) 位置 ,
即 从 (i , j) 走到 ( m - 1 , n - 1 ) 位置的方案数 , 依赖于
- 从 (i + 1, j) 走到 ( m - 1 , n - 1 ) 位置的方案数
- 从 (i , j + 1) 走到 ( m - 1 , n - 1 ) 位置的方案数
之和 ;
这里可以得到依赖关系 : dp[i][j] = dp[i+1][j] + dp[i][j+1]
4、动态规划答案 Answer
最终的 从 左上角 (0 , 0) 位置 走到 右下角 (m , n) 位置 的方案总数就是 状态 State 中的 dp[0][0] 数值 ;
5、代码示例
代码示例 :
public class Solution
/**
* 不同路径
* @param m 网格行数
* @param n 网格列数
* @return
*/
public int uniquePaths(int m, int n)
// 1. 动态规划状态 State
// dp[i][j] 表示 从 (i , j) 位置出发 , 到 (m - 1, n - 1) 位置的方案总数 ;
int[][] dp = new int[m][n];
// 2. 动态规划初始化 Initialize
// 最右侧的一列 , 只能向下走 , 到 (m - 1, n - 1) 位置的方案总数 也为 1 ,
// 因此有 dp[i][n - 1] = 1 ;
for (int i = 0; i < m; ++i)
dp[i][n - 1] = 1;
// 最下方的一排 , 只能向右走 , 其 到 (m - 1, n - 1) 位置的方案总数 方案数也为 1 ,
// 因此有 dp[m - 1][j] = 1 ;
for (int j = 0; j < n; ++j)
dp[m - 1][j] = 1;
// 3. 动态规划方程 Function
// 由于 运动时 , 只能 向右 或 向下 走 ,
// 从 (i , j) 走到 ( m - 1 , n - 1 ) 只能是走 右边 (i + 1, j) 或 下边 (i , j + 1) 位置 ,
// 即 从 (i , j) 走到 ( m - 1 , n - 1 ) 位置的方案数 , 依赖于
// 从 (i + 1, j) 走到 ( m - 1 , n - 1 ) 位置的方案数
// 从 (i , j + 1) 走到 ( m - 1 , n - 1 ) 位置的方案数
// 之和
for (int i = m - 2; i >= 0; i--)
for (int j = n - 2; j >= 0; j--)
dp[i][j] = dp[i + 1][j] + dp[i][j + 1];
// 4. 动态规划答案 Answer
// 最终的 从 左上角 (0 , 0) 位置 走到 右下角 (m , n) 位置
// 的方案总数就是 状态 State 中的 dp[0][0] 数值 ;
return dp[0][0];
public static void main(String[] args)
int minTotal = new Solution().uniquePaths(3, 7);
System.out.println("3 x 7 网格方案数为 : " + minTotal);
执行结果 :
3 x 7 网格方案数为 : 28
以上是关于算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )的主要内容,如果未能解决你的问题,请参考以下文章
⭐算法入门⭐《动态规划 - 路径DP》中等01 —— LeetCode 62. 不同路径
Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths)