张量(tensor)的阶、形状、数据类型
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了张量(tensor)的阶、形状、数据类型相关的知识,希望对你有一定的参考价值。
参考技术A今天学搭感知机的时候有一个函数newaxis,是用来给神经元层增加一个哑节点。
第一层成为输入层(Input Layer),最后一层称为输出层(Output Layer),中间一层成为隐藏层(Hidden Layers)。我们为输入层和隐藏层增加一个偏倚单位(bias unit),就是哑结点,方便计算。
numpy.newaxis从字面上是插入新的维度的意思
可以看出np.newaxis分别是在行或列上增加维度,原来是(10,)的一维数组,在行上增加维度变成(1, 10)的二维数组,在列上增加维度变为(10,1)的二维数组。
ちょっと待って、这个二维数组是什么意思啊,看起来,也不像是二维的矩阵的意思。之前在word2vec里习惯了一个向量[1,0,...,0]的长度就是它的维数啊,那么numpy里的二维数组究竟是个啥?
秩,即轴的数量或维度的数量
例2是 全1三维数组,也就是三阶张量。在NumPy 数组没有阶的说法,但意思是一样的。
阶就相当于ndarray中的秩,即轴的数量或维度的数量 。
REF:
tensorflow学习笔记
一、看懂了Tensor("mul_1:0", shape=(), dtype=int32)中的shape
https://blog.csdn.net/u013378306/article/details/56281549
张量的阶、形状、数据类型
TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.
阶
在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]
来访问其中的任何元素.而对于三阶张量你可以用‘t[i, j, k]‘来访问其中的任何元素.
阶 | 数学实例 | Python 例子 |
---|---|---|
0 | 纯量 (只有大小) | s = 483 |
1 | 向量(大小和方向) | v = [1.1, 2.2, 3.3] |
2 | 矩阵(数据表) | m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] |
3 | 3阶张量 (数据立体) | t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]] |
n | n阶 (自己想想看) | .... |
形状
TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:
阶 | 形状 | 维数 | 实例 |
---|---|---|---|
0 | [ ] | 0-D | 一个 0维张量. 一个纯量. |
1 | [D0] | 1-D | 一个1维张量的形式[5]. |
2 | [D0, D1] | 2-D | 一个2维张量的形式[3, 4]. |
3 | [D0, D1, D2] | 3-D | 一个3维张量的形式 [1, 4, 3]. |
n | [D0, D1, ... Dn] | n-D | 一个n维张量的形式 [D0, D1, ... Dn]. |
- ```python
- # 2-D tensor `a`
- a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]
- [4. 5. 6.]]
- # 2-D tensor `b`
- b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
- [9. 10.]
- [11. 12.]]
- c = tf.matmul(a, b) => [[58 64]
- [139 154]]
- # 3-D tensor `a`
- a = tf.constant(np.arange(1,13), shape=[2, 2, 3]) => [[[ 1. 2. 3.]
- [ 4. 5. 6.]],
- [[ 7. 8. 9.]
- [10. 11. 12.]]]
- # 3-D tensor `b`
- b = tf.constant(np.arange(13,25), shape=[2, 3, 2]) => [[[13. 14.]
- [15. 16.]
- [17. 18.]],
- [[19. 20.]
- [21. 22.]
- [23. 24.]]]
- c = tf.matmul(a, b) => [[[ 94 100]
- [229 244]],
- [[508 532]
- [697 730]]]
tensorflow中有一类在tensor的某一维度上求值的函数,
如:
求最大值tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)
求平均值tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)
参数(1)input_tensor:待求值的tensor。
参数(2)reduction_indices:在哪一维上求解。
参数(3)(4)可忽略
举例说明:
# ‘x‘ is [[1., 2.]
# [3., 4.]]
x是一个2维数组,分别调用reduce_*函数如下:
首先求平均值,
tf.reduce_mean(x) ==> 2.5 #如果不指定第二个参数,那么就在所有的元素中取平均值
tf.reduce_mean(x, 0) ==> [2., 3.] #指定第二个参数为0,则第一维的元素取平均值,即每一列求平均值
tf.reduce_mean(x, 1) ==> [1., 2.] #
指定第二个参数为1,则第二维的元素取平均值,即每一行求平均值
同理,还可用tf.reduce_max()求最大值。
以上是关于张量(tensor)的阶、形状、数据类型的主要内容,如果未能解决你的问题,请参考以下文章