paddledet 训练旋转目标检测 ppyoloe-r 训练自己的数据集
Posted 东东就是我
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了paddledet 训练旋转目标检测 ppyoloe-r 训练自己的数据集相关的知识,希望对你有一定的参考价值。
1.数据转换
labelme2coco,原来是labelme标注的points 通过opencv转为4个坐标
# encoding=utf-8
import argparse
import collections
import datetime
import glob
import json
import os
import os.path as osp
import sys
import uuid
import cv2
import imgviz
import numpy as np
import labelme
try:
import pycocotools.mask
except ImportError:
print("Please install pycocotools:\\n\\n pip install pycocotools\\n")
sys.exit(1)
def main():
input_dir='G:/customer/visionary_s_3d_dete/zhixi'
output_dir='dataset/zhixi'
os.makedirs(output_dir)
os.makedirs(osp.join(output_dir, "JPEGImages"))
data = dict(
images=[
# license, url, file_name, height, width, date_captured, id
],
annotations=[
# segmentation, area, iscrowd, image_id, bbox, category_id, id
],
categories=[
# supercategory, id, name
],
)
data["categories"].append(
dict(supercategory=None, id=0, name='sack',)
)
out_ann_file = osp.join(output_dir, "annotations.json")
label_files = glob.glob(osp.join(input_dir, "*.json"))
for image_id, filename in enumerate(label_files):
print("Generating dataset from:", filename)
label_file = labelme.LabelFile(filename=filename)
base = osp.splitext(osp.basename(filename))[0]
out_img_file = osp.join(output_dir, "JPEGImages", base + ".jpg")
img = labelme.utils.img_data_to_arr(label_file.imageData)
imgviz.io.imsave(out_img_file, img)
data["images"].append(
dict(
license=0,
url=None,
file_name=osp.relpath(out_img_file, osp.dirname(out_ann_file)),
height=img.shape[0],
width=img.shape[1],
date_captured=None,
id=image_id,
)
)
masks = # for area
segmentations = collections.defaultdict(list) # for segmentation
for shape in label_file.shapes:
points = shape["points"]
label = shape["label"]
group_id = shape.get("group_id")
shape_type = shape.get("shape_type")
mask = labelme.utils.shape_to_mask(
img.shape[:2], points, shape_type
)
if group_id is None:
group_id = uuid.uuid1()
instance = (label, group_id)
if instance in masks:
masks[instance] = masks[instance] | mask
else:
masks[instance] = mask
if shape_type == "rectangle":
(x1, y1), (x2, y2) = points
x1, x2 = sorted([x1, x2])
y1, y2 = sorted([y1, y2])
points = [x1, y1, x2, y1, x2, y2, x1, y2]
if shape_type == "circle":
(x1, y1), (x2, y2) = points
r = np.linalg.norm([x2 - x1, y2 - y1])
# r(1-cos(a/2))<x, a=2*pi/N => N>pi/arccos(1-x/r)
# x: tolerance of the gap between the arc and the line segment
n_points_circle = max(int(np.pi / np.arccos(1 - 1 / r)), 12)
i = np.arange(n_points_circle)
x = x1 + r * np.sin(2 * np.pi / n_points_circle * i)
y = y1 + r * np.cos(2 * np.pi / n_points_circle * i)
points = np.stack((x, y), axis=1).flatten().tolist()
elif shape_type=="polygon":
points=np.float32(points)
rect = cv2.minAreaRect(points) # 最小外接矩形
points = cv2.boxPoints(rect).flatten()
points=points.tolist()
# points = np.asarray(box).flatten().tolist()
segmentations[instance].append(points)
segmentations = dict(segmentations)
for instance, mask in masks.items():
mask = np.asfortranarray(mask.astype(np.uint8))
mask = pycocotools.mask.encode(mask)
area = float(pycocotools.mask.area(mask))
bbox = pycocotools.mask.toBbox(mask).flatten().tolist()
data["annotations"].append(
dict(
id=len(data["annotations"]),
image_id=image_id,
category_id=0,
segmentation=segmentations[instance],
area=area,
bbox=bbox,
iscrowd=0,
)
)
with open(out_ann_file, "w") as f:
json.dump(data, f)
if __name__ == "__main__":
main()
2.修改data.yml文件
这个路径要根据自己实际修改,实在不行就debug看看哪里出问题
metric: RBOX
num_classes: 15
TrainDataset:
!COCODataSet
image_dir:
anno_path: annotations/annotations.json
dataset_dir: ../dataset/zhixi
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd', 'gt_poly']
EvalDataset:
!COCODataSet
image_dir:
anno_path: annotations/annotations.json
dataset_dir: ../dataset/zhixi
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd', 'gt_poly']
TestDataset:
!ImageFolder
anno_path: annotations/annotations.json
dataset_dir: ../dataset/zhixi
3.训练报错
RuntimeError: (PreconditionNotMet) The third-party dynamic library (cublas64_102.dll;cublas64_10.dll) that Paddle depends on is not configured correctly. (error code is 126)
解决:路径为C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\bin
在bin路径下将cublas64_100.dll重命名为cublas64_10.dll
在bin路径下将cusolver64_100重命名为cusolver64_10
————————————————
版权声明:本文为CSDN博主「李伯爵的指间沙」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_37690102/article/details/123474171
以上是关于paddledet 训练旋转目标检测 ppyoloe-r 训练自己的数据集的主要内容,如果未能解决你的问题,请参考以下文章
paddle学习赛——钢铁目标检测(yolov5ppyoloe+,Faster-RCNN)
基于MMRotate训练自定义数据集 做旋转目标检测 2022-3-30
算法SOTA功能全面性能最佳,PaddleDetection 2.0重磅升级!
手把手教你在百度飞桨云平台下运行PPYOLO-E,训练COCO数据集