怎么在Linux下设置vnc服务器,使其能同时有多个用户用root登录,而且不会被抵消掉

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了怎么在Linux下设置vnc服务器,使其能同时有多个用户用root登录,而且不会被抵消掉相关的知识,希望对你有一定的参考价值。

那么链接vnc后黑屏的问题怎么解决?

1. 安装Tigervnc-server

Tigervnc-server is a program which executes an Xvnc server and starts parallel sessions of Gnome or other Desktop Environment on the VNC desktop.

同个用户可以通过多个客户端使用VNC会话。在CentOS7上安装Tigervnc-server请打开终端,使用root用户权限安装:

sudo yum -y install tigervnc-server

2. 安装完毕后,切换到你想使用Tigervnc-server的用户,然后使用下列命令对VNC设置密码,需要注意的是密码长度必须为6位以上:

su - your_uservncpasswd

3. 接下来,在系统配置文件路径下为你的用户添加一个VNC服务配置文件(daemon configuration file)。需要注意的是拷贝至系统路径需要root权限。
加入当前用户不具有root权限,请切换到root用户(su - root)或者使用以下命令:

sudo cp /lib/systemd/system/vncserver@.service  /etc/systemd/system/vncserver@:1.service

4. 下一步,编辑从系统路径(/etc/systemd/system/)拷贝过来的VNC的模板配置文件。将其中的用户名改为你的用户名。

(注意) 在 @后面的数字1表示的是显示界面的序列号,对应的端口是port 5900+序列号。对于每一个启动的vncserver服务,端口号5900会自增1。

sudo vim /etc/systemd/system/vncserver@\\:1.service

添加下列行到覆盖原来的vncserver@:1.service.   注意:下面的两处xxx替换为自己的而用户名

[Unit]Description=Remote desktop service (VNC)After=syslog.target network.target[Service]Type=forkingUser=xxx# Clean any existing files in /tmp/.X11-unix environmentExecStartPre=-/usr/bin/vncserver -kill %iExecStart=/usr/bin/vncserver %iPIDFile=/home/xxx/.vnc/%H%i.pidExecStop=-/usr/bin/vncserver -kill %i[Install]WantedBy=multi-user.target

5. 添加完毕后,重新运行系统systemd的初始化程序以便使新的配置文件生效,然后重启TigerVNC server
与此同时,检查VNC service的状态同时启用VNC daemon system-wide。

systemctl daemon-reloadsystemctl start vncserver@:1systemctl status vncserver@:1systemctl enable vncserver@:1



6. 我们可以查看VNC server占用的端口号,使用命令ss——CentOS 7下用来显示网络sockets 占用的命令。因为我们刚刚打开了一个显示会话,所以目前打开的端口应该是5901/TCP.

同样的,使用ss命令需要root权限。假如不同用户登录到了本机,对应的端口号就应该是5902,接下来应该是5903 等等,端口6000+是用于X应用连接到VNC server的.

IIS7服务器管理工具可以批量管理、定时上传下载、同步操作、数据备份、到期提醒、自动更新。IIS7服务器管理工具适用于Windows操作系统和liunx操作系统;支持Vnc客户端和Ftp客户端批量操作。

参考技术A 教你一下怎么用vnc吧。
1.如果你要用某个用户登录vnc,首先在command line下用这个user登录
比如,你要用Oracle登录vnc,首先su - oracle
之后在command line下输入 vnc
接着vi ~/.vnc/xstart字样的文件把所有内容都屏蔽,加上 gnome-session
接着重启vnc
vncserver -kill:1
vncserver
再用vncviewer登录

2.用root用户登录vnc,调出command-line su - user
也是一样可以用的
参考技术B 教你一下怎么用vnc吧。
1.如果你要用某个用户登录vnc,首先在command line下用这个user登录
比如,你要用Oracle登录vnc,首先su - oracle
之后在command line下输入 vnc
接着vi ~/.vnc/xstart字样的文件把所有内容都屏蔽,加上 gnome-session
接着重启vnc
vncserver -kill:1
vncserver
再用vncviewer登录

2.用root用户登录vnc,调出command-line su - user
也是一样可以用的
参考技术C vnc是同用户共享桌面.
你们只能多使用几个普通账户登录后, 在使用 su - 切换到root

修改YOLOv5 detect.py代码使其能逐个视频检测保存,同时对每个视频内参数进行单独操作

真没怎么看懂YOLOv5的detect.py代码的逻辑,看了YOLOv3,和YOLOv4的detect逻辑,基本都是用opencv对每个视频进行操作,感觉还清晰易懂一点,YOLOv5的作者都好像没用opencv进行操作,或者把opencv的视频操作封装成另一个py文件隐藏起来,实在有些隐晦,所以用了最笨的方法,用os.listdir读视频文件目录下的所有视频,逐一检测。同时改写了画框的函数(因为要保存一帧关键帧的内容),检测命令里是用python detect.py --exist-ok --nosave,因为检测命令里带nosave这一选项,所以浅扒了一下作者的画框逻辑,发现还是用的opencv的rectangle方法(作者藏的

import numpy as np
import argparse
import os
import sys
from pathlib import Path
import time
import shutil
from PIL import Image
import cv2
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync


@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        vidpath='/home/ccf_disk/animal/test/',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.6,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=True,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project='/home/ccf_disk/animal/video_animal',  # save results to project/name
        name='test_1',  # save results to project/name
        exist_ok=True,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        ):
    vidpath = str(vidpath)
    videos = os.listdir(vidpath)
    number = 0
    for video_name in videos:
        time1_start = time.time()
        so = vidpath + video_name
        number = number + 1
        print("第%d个视频处理中" %number)
        source = str(so)
        save_c = 0
        keep = 0
        save_img = not nosave and not source.endswith('.txt')  # save inference images
        is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
        is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
        webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
        if is_url and is_file:
            source = check_file(source)  # download

        # Directories
        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        # Load model
        device = select_device(device)
        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
        stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
        imgsz = check_img_size(imgsz, s=stride)  # check image size

        # Half
        half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
        if pt or jit:
            model.model.half() if half else model.model.float()

        # Dataloader
        if webcam:
            view_img = check_imshow()
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
            bs = len(dataset)  # batch_size
        else:
            dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
            bs = 1  # batch_size
        vid_path, vid_writer = [None] * bs, [None] * bs

        # Run inference
        model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
        dt, seen = [0.0, 0.0, 0.0], 0
        for path, im, im0s, vid_cap, s in dataset:
            flag = 0
            c = 1
            time1 = 6
            # t1 = time_sync()
            im = torch.from_numpy(im).to(device)
            im = im.half() if half else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim
            # t2 = time_sync()
            # dt[0] += t2 - t1

            # Inference

            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(im, augment=augment, visualize=visualize)
            # t3 = time_sync()
            # dt[1] += t3 - t2

            # NMS
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

            # dt[2] += time_sync() - t3

            # Second-stage classifier (optional)
            # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

            # Process predictions
            for i, det in enumerate(pred):  # per image
                seen += 1
                count = 0
                if webcam:  # batch_size >= 1
                    p, im0, frame = path[i], im0s[i].copy(), dataset.count
                    s += f'i: '
                else:
                    p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

                p = Path(p)  # to Path
                save_path = str(save_dir / p.name)  # im.jpg
                txt_path = str(save_dir / 'labels' / p.stem) + (
                    '' if dataset.mode == 'image' else f'_frame')  # im.txt
                s += '%gx%g ' % im.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                imc = im0.copy() if save_crop else im0  # for save_crop
                annotator = Annotator(im0, line_width=line_thickness, example=str(names))
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"n names[int(c)]'s' * (n > 1), "  # add to string

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        count = 1
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                            with open(txt_path + '.txt', 'a') as f:
                                f.write(('%g ' * len(line)).rstrip() % line + '\\n')

                        if save_img or save_crop or view_img:  # Add bbox to image
                            c = int(cls)  # integer class
                            label = None if hide_labels else (names[c] if hide_conf else f'names[c] conf:.2f')
                            annotator.box_label(xyxy, label, color=colors(c, True))
                            if save_crop:
                                save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'p.stem.jpg', BGR=True)
                        box = xyxy        
                        c = int(cls)  # integer class
                        p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
                        lw = max(round(sum(im0.shape) / 2 * 0.003), 2)
                        cv2.rectangle(im0, p1, p2, color=(0, 0, 255),
                                      thickness=max(round(sum(im0.shape) / 2 * 0.003), 2), lineType=cv2.LINE_AA)
                        label = (f'names[c] conf:.2f')
                        tf = max(lw - 1, 1)
                        w, h = cv2.getTextSize(label, 0, fontScale=lw / 3, thickness=tf)[0]  # text width, height
                        outside = p1[1] - h - 3 >= 0  # label fits outside box
                        cv2.putText(im0, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, lw / 3,
                                    (0, 0, 255),
                                    thickness=tf, lineType=cv2.LINE_AA)

                # Stream results
                im0 = annotator.result()
                if view_img:
                    cv2.imshow(str(p), im0)
                    cv2.waitKey(1)  # 1 millisecond
                if (seen % time1 == 0):
                    if (count == 0):
                        save_c = 0
                    else:
                        save_c = save_c + 1
                if(save_c>=4):
                    if keep == 0:
                        im0 = cv2.cvtColor(im0, cv2.COLOR_BGR2RGB)
                        frame = Image.fromarray(np.uint8(im0))
                        #print(save_path)
                        frame.save(str(save_path.split('.')[0]) + ".jpg")
                        keep = 1
                        shutil.copy(so, save_path)
                        print('have animal')
                        break
            else:
                continue
            break


            # # Save results (image with detections)
            # if save_img:
            #     if dataset.mode == 'image':
            #         cv2.imwrite(save_path, im0)
            #     else:  # 'video' or 'stream'
            #         if vid_path[i] != save_path:  # new video
            #             vid_path[i] = save_path
            #             if isinstance(vid_writer[i], cv2.VideoWriter):
            #                 vid_writer[i].release()  # release previous video writer
            #             if vid_cap:  # video
            #                 fps = vid_cap.get(cv2.CAP_PROP_FPS)
            #                 w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            #                 h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            #             else:  # stream
            #                 fps, w, h = 30, im0.shape[1], im0.shape[0]
            #             save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
            #             vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
            #         vid_writer[i].write(im0)

            # Print time (inference-only)
            # LOGGER.info(f'sDone. (t3 - t2:.3fs)')

        # Print results
        # t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
        # LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape (1, 3, *imgsz)' % t)
        if save_txt or save_img:
            s = f"\\nlen(list(save_dir.glob('labels/*.txt'))) labels saved to save_dir / 'labels'" if save_txt else ''
            # LOGGER.info(f"Results saved to colorstr('bold', save_dir)s")
        if update:
            strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

        time1_end = time.time()
        print('视频%d处理时间' % number + str(time1_end-time1_start))
        # if bool == True:
        #     shutil.copy(so, save_path)
        # else:
        #     pass


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'weights/best.pt', help='model path(s)')
    parser.add_argument('--vidpath', type=str, default='/home/ccf_disk/animal/video/4-3/',
                        help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--data', type=str, default=ROOT / 'data/myvoc.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.75, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='/home/ccf_disk/animal/video_animal_yolov5/', help='save results to project/name')
    parser.add_argument('--name', default='4-3', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

有点深),第一次发博客,浅记录一下。

以上是关于怎么在Linux下设置vnc服务器,使其能同时有多个用户用root登录,而且不会被抵消掉的主要内容,如果未能解决你的问题,请参考以下文章

请问怎样设置SQL Server 2000,使其能支持远程连接?

windows怎么开启vnc服务

修改YOLOv5 detect.py代码使其能逐个视频检测保存,同时对每个视频内参数进行单独操作

QT4 Linux GUI应用程序如何把所需要的QT库一起打包,使其能在没有装QT4的Linux平台上运行??

VNC-Viewert如何设置置于最前端

Linux远程连接桌面VNC,如何实现Linux远程连接桌面VNC!