Dubbo3高级特性「框架与服务」服务并发控制及集群负载均衡的实践指南(含扩展SPI)

Posted 洛神灬殇

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Dubbo3高级特性「框架与服务」服务并发控制及集群负载均衡的实践指南(含扩展SPI)相关的知识,希望对你有一定的参考价值。

Dubbo3中的并发控制

XML方式配置

限制类的线程隔离控制(服务端)

限制com.xxx.ApiService的每个方法,服务器端并发执行(或占用线程池线程数)不能超过 10 个:

<dubbo:service interface="com.xxx.ApiService" executes="10" />

Annotation方式配置

限制类的线程隔离控制(服务端)

限制com.xxx.ApiService的每个方法,服务器端并发执行(或占用线程池线程数)不能超过 10 个:

@DubboService(version = "1.0.0",executes=10)
public class DefaultRpcOrderProcessApi implements RpcOrderProcessApi 

限制方法的线程隔离控制(服务端)

限制com.xxx.ApiService的sayHello 方法,服务器端并发执行(或占用线程池线程数)不能超过 10 个:

<dubbo:service interface="com.xxx.ApiService">
    <dubbo:method name="sayHello" executes="10" />
</dubbo:service>

Annotation方式配置

限制方法的线程隔离控制(服务端)

限制com.xxx.ApiService的sayHello 方法,服务器端并发执行(或占用线程池线程数)不能超过 10 个:

@DubboService(version = "1.0.0",
        methods = 
        @Method(name = "sayHello", executes= 10, retries = 0))
public class DefaultRpcOrderProcessApi implements RpcOrderProcessApi 

XML方式配置

限制类的线程隔离控制(消费端)

限制 com.xxx.ApiService的每个方法,每客户端并发执行(或占用连接的请求数)不能超过 10 个:

<dubbo:reference interface="com.xxx.ApiService" actives="10" />

Annotation方式配置

限制类的线程隔离控制(消费端)

限制 com.xxx.ApiService的每个方法,每客户端并发执行(或占用连接的请求数)不能超过 10 个:


@DubboReference(version = "1.0.0",actives = 10)
RpcShopCarProcessApi rpcShopCarProcessApi;

XML方式配置

限制方法的线程隔离控制(消费端)

限制 com.xxx.ApiService 的 sayHello 方法,每客户端并发执行(或占用连接的请求数)不能超过 10 个:

<dubbo:reference interface="com.xxx.ApiService">
    <dubbo:method name="sayHello" actives="10" />
</dubbo:service>

Annotation方式配置

限制方法的线程隔离控制(消费端)

限制 com.xxx.ApiService 的 sayHello 方法,每客户端并发执行(或占用连接的请求数)不能超过 10 个:

    @DubboReference(version = "1.0.0",methods = @Method(name = "sayHello", actives= 10, retries = 0))
    RpcShopCarProcessApi rpcShopCarProcessApi;```

集群负载均衡

在集群负载均衡时,Dubbo 提供了多种均衡策略,缺省为 random 随机调用。配置服务的客户端的 loadbalance 属性为leastactive,此 Loadbalance 会调用并发数最小的 Provider(Consumer端并发数)。

负载均衡策略

目前 Dubbo 内置了如下负载均衡算法,用户可直接配置使用:

算法特性备注
RandomLoadBalance加权随机默认算法,默认权重相同
RoundRobinLoadBalance加权轮询借鉴于 nginx 的平滑加权轮询算法,默认权重相同
LeastActiveLoadBalance最少活跃优先 + 加权随机背后是能者多劳的思想
ShortestResponseLoadBalance最短响应优先 + 加权随机更加关注响应速度
ConsistentHashLoadBalance一致性 Hash确定的入参,确定的提供者,适用于有状态请求

LoadbalanceRules的选择类型

public interface LoadbalanceRules 

    /**
     *  This class select one provider from multiple providers randomly.
     **/
    String RANDOM = "random";

    /**
     *  Round robin load balance.
     **/
    String ROUND_ROBIN = "roundrobin";

    /**
     *  Filter the number of invokers with the least number of active calls and count the weights and quantities of these invokers.
     **/
    String LEAST_ACTIVE = "leastactive";

    /**
     *  Consistent Hash, requests with the same parameters are always sent to the same provider.
     **/
    String CONSISTENT_HASH = "consistenthash";

    /**
     *  Filter the number of invokers with the shortest response time of success calls and count the weights and quantities of these invokers.
     **/
    String SHORTEST_RESPONSE = "shortestresponse";

    String EMPTY = "";


Random

加权随机,按权重设置随机概率。在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

  • 缺点:存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。
实现的源码如下:
public class RandomLoadBalance extends AbstractLoadBalance 

    public static final String NAME = "random";

    /**
     * Select one invoker between a list using a random criteria
     * @param invokers List of possible invokers
     * @param url URL
     * @param invocation Invocation
     * @param <T>
     * @return The selected invoker
     */
    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) 
        // Number of invokers
        int length = invokers.size();

        if (!needWeightLoadBalance(invokers,invocation))
            return invokers.get(ThreadLocalRandom.current().nextInt(length));
        

        // Every invoker has the same weight?
        boolean sameWeight = true;
        // the maxWeight of every invokers, the minWeight = 0 or the maxWeight of the last invoker
        int[] weights = new int[length];
        // The sum of weights
        int totalWeight = 0;
        for (int i = 0; i < length; i++) 
            int weight = getWeight(invokers.get(i), invocation);
            // Sum
            totalWeight += weight;
            // save for later use
            weights[i] = totalWeight;
            if (sameWeight && totalWeight != weight * (i + 1)) 
                sameWeight = false;
            
        
        if (totalWeight > 0 && !sameWeight) 
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
            int offset = ThreadLocalRandom.current().nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < length; i++) 
                if (offset < weights[i]) 
                    return invokers.get(i);
                
            
        
        // If all invokers have the same weight value or totalWeight=0, return evenly.
        return invokers.get(ThreadLocalRandom.current().nextInt(length));
    

    private <T> boolean needWeightLoadBalance(List<Invoker<T>> invokers, Invocation invocation) 

        Invoker invoker = invokers.get(0);
        URL invokerUrl = invoker.getUrl();
        // Multiple registry scenario, load balance among multiple registries.
        if (REGISTRY_SERVICE_REFERENCE_PATH.equals(invokerUrl.getServiceInterface())) 
            String weight = invokerUrl.getParameter(REGISTRY_KEY + "." + WEIGHT_KEY);
            if (StringUtils.isNotEmpty(weight)) 
                return true;
            
         else 
            String weight = invokerUrl.getMethodParameter(invocation.getMethodName(), WEIGHT_KEY);
            if (StringUtils.isNotEmpty(weight)) 
                return true;
            else 
                String timeStamp = invoker.getUrl().getParameter(TIMESTAMP_KEY);
                if (StringUtils.isNotEmpty(timeStamp)) 
                    return true;
                
            
        
        return false;
    

当我们使用它的时候,只需要进行选择loadBalance值作为“random”( public static final String NAME = “random”;)

RoundRobin

加权轮询,按公约后的权重设置轮询比率,循环调用节点

  • 缺点:同样存在慢的提供者累积请求的问题。
源码如下:
public class RoundRobinLoadBalance extends AbstractLoadBalance 
    public static final String NAME = "roundrobin";

    private static final int RECYCLE_PERIOD = 60000;

    protected static class WeightedRoundRobin 
        private int weight;
        private AtomicLong current = new AtomicLong(0);
        private long lastUpdate;

        public int getWeight() 
            return weight;
        

        public void setWeight(int weight) 
            this.weight = weight;
            current.set(0);
        

        public long increaseCurrent() 
            return current.addAndGet(weight);
        

        public void sel(int total) 
            current.addAndGet(-1 * total);
        

        public long getLastUpdate() 
            return lastUpdate;
        

        public void setLastUpdate(long lastUpdate) 
            this.lastUpdate = lastUpdate;
        
    

    private ConcurrentMap<String, ConcurrentMap<String, WeightedRoundRobin>> methodWeightMap = new ConcurrentHashMap<String, ConcurrentMap<String, WeightedRoundRobin>>();

    /**
     * get invoker addr list cached for specified invocation
     * <p>
     * <b>for unit test only</b>
     *
     * @param invokers
     * @param invocation
     * @return
     */
    protected <T> Collection<String> getInvokerAddrList(List<Invoker<T>> invokers, Invocation invocation) 
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        Map<String, WeightedRoundRobin> map = methodWeightMap.get(key);
        if (map != null) 
            return map.keySet();
        
        return null;
    

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) 
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        ConcurrentMap<String, WeightedRoundRobin> map = methodWeightMap.computeIfAbsent(key, k -> new ConcurrentHashMap<>());
        int totalWeight = 0;
        long maxCurrent = Long.MIN_VALUE;
        long now = System.currentTimeMillis();
        Invoker<T> selectedInvoker = null;
        WeightedRoundRobin selectedWRR = null;
        for (Invoker<T> invoker : invokers) 
            String identifyString = invoker.getUrl().toIdentityString();
            int weight = getWeight(invoker, invocation);
            WeightedRoundRobin weightedRoundRobin = map.computeIfAbsent(identifyString, k -> 
                WeightedRoundRobin wrr = new WeightedRoundRobin();
                wrr.setWeight(weight);
                return wrr;
            );

            if (weight != weightedRoundRobin.getWeight()) 
                //weight changed
                weightedRoundRobin.setWeight(weight);
            
            long cur = weightedRoundRobin.increaseCurrent();
            weightedRoundRobin.setLastUpdate(now);
            if (cur > maxCurrent) 
                maxCurrent = cur;
                selectedInvoker = invoker;
                selectedWRR = weightedRoundRobin;
            
            totalWeight += weight;
        
        if (invokers.size() != map.size()) 
            map.entrySet().removeIf(item -> now - item.getValue().getLastUpdate() > RECYCLE_PERIOD);
        
        if (selectedInvoker != null) 
            selectedWRR.sel(totalWeight);
            return selectedInvoker;
        
        // should not happen here
        return invokers.get(0);
    

得出结论可以使用roundrobin进行指定(public static final String NAME = "roundrobin)

LeastActive

加权最少活跃调用优先,活跃数越低,越优先调用,相同活跃数的进行加权随机。活跃数指调用前后计数差(针对特定提供者:请求发送数 - 响应返回数),表特定提供者的任务堆积量,活跃数越低,代表该提供者处理能力越强。

  • 使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大;相对的,处理能力越强的节点,处理更多的请求。
public class LeastActiveLoadBalance extends AbstractLoadBalance 

    public static final String NAME = "leastactive";

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) 
        // Number of invokers
        int length = invokers.size();
        // The least active value of all invokers
        int leastActive = -1;
        // The number of invokers having the same least active value (leastActive)
        int leastCount = 0;
        // The index of invokers having the same least active value (leastActive)
        int[] leastIndexes = new int[length];
        // the weight of every invokers
        int[] weights = new int[length];
        // The sum of the warmup weights of all the least active invokers
        int totalWeight = 0;
        // The weight of the first least active invoker
        int firstWeight = 0;
        // Every least active invoker has the same weight value?
        boolean sameWeight = true;


        // Filter out all the least active invokers
        for (int i = 0; i < length; i++) 
            Invoker<T> invoker = invokers.get(i);
            // Get the active number of the invoker
            int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();
            // Get the weight of the invoker's configuration. The default value is 100.
            int afterWarmup = getWeight(invoker, invocation);
            // save for later use
            weights[i] = afterWarmup;
            // If it is the first invoker or the active number of the invoker is less than the current least active number
            if (leastActive == -1 || active < leastActive) 
                // Reset the active number of the current invoker to the least active number
                leastActive = active;
                // Reset the number of least active invokers
                leastCount = 1;
                // Put the first least active invoker first in leastIndexes
                leastIndexes[0] = i;
                // Reset totalWeight
                totalWeight = afterWarmup;
                // Record the weight the first least active invoker
                firstWeight = afterWarmup;
                // Each invoke has the same weight (only one invoker here)
                sameWeight = true;
                // If current invoker's active value equals with leaseActive, then accumulating.
             else if (active == leastActive) 
                // Record the index of the least active invoker in leastIndexes order
                leastIndexes[leastCount++] = i;
                // Accumulate the total weight of the least active invoker
                totalWeight += afterWarmup;
                // If every invoker has the same weight?
                if (sameWeight && afterWarmup != firstWeight) 
                    sameWeight = false;
                
            
        
        // Choose an invoker from all the 

以上是关于Dubbo3高级特性「框架与服务」服务并发控制及集群负载均衡的实践指南(含扩展SPI)的主要内容,如果未能解决你的问题,请参考以下文章

Dubbo3高级特性「框架与服务」Dubbo3客户端和服务端的泛化调用机制体系

Dubbo3高级特性「框架与服务」自定义Dubbo服务容器及扩展容器实现分析

Dubbo3高级特性「框架与服务」框架与服务的异步调用实践以及开发模式

Dubbo3高级特性「框架与服务」在dubbo3中进行参数校验及自定义验证扩展机制

Dubbo3高级特性「框架与服务」 针对出现异常的RPC的服务功能降级机制

Dubbo3高级特性「框架与服务」服务端通过线程池隔离技术实现资源限制和资源隔离机制