实战SparkStream+Kafka+Redis实时计算商品销售额

Posted 赵侠客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实战SparkStream+Kafka+Redis实时计算商品销售额相关的知识,希望对你有一定的参考价值。

写在前面

2016年天猫双十一当天,零点的倒计时话音未落,52秒交易额冲破10亿。随后,又迅速在0时6分28秒,达到100亿!每一秒开猫大屏上的交易额都在刷新,这种时实刷新的大屏看着感觉超爽。天猫这个大屏后面的技术应该是使用流计算,阿里使用Java将Storm重写了,叫JStrom(https://github.com/alibaba/jstorm),最近学习SparkStream和Kafka,可以简单模仿一下这个时实计算成交额的过程,主要目的是实际运用这些技术,也了解一下技术的运用场景,加深对技术的理解。

实时计算模型

下图所示为通用SparkStream时实计算模型,主要分为三部分

  1. 数据源
    我们这里的数据源选用了Kafka,关于Kafka的安装与使用说明可以参考这里https://kafkadoc.beanmr.com/

  2. SparkStream计算
    SparkStream是实时计算的核心,这们这里也是近时实计算,选择一个时间窗口,对时间窗口中的数据做离线计算。

  3. 数据落地
    SparkStream算好的结果可以存HDFS/mysql/Redis等等,我们这里对商品销售额计算过程有涉及累加,所以选择了Redis

业务模型介绍

我们模仿一个电商系统,每时每刻都有订单成交,每一笔成交的数据以一个事件发送到Kafka中,SparkStream每一分中从Kafka中读取一次数据,计算一分钟内每个商品的销售额,然而写入Redis,并在Redis中累加每分钟的数据,Redis中主要存三种结果数量,从开始到当前总销售额、从开始到当前每个商品销售额、上一分钟每个商品的销售额

Kafka生产者,模拟每时每刻订单交易

object OrderProducer 


  def main(args: Array[String]): Unit = 

    //Kafka参数设置
    val topic = "order"
    val brokers = "127.0.0.1:9092"
    val props = new Properties()
    props.put("metadata.broker.list", brokers)
    props.put("serializer.class", "kafka.serializer.StringEncoder")
    val kafkaConfig = new ProducerConfig(props)
    //创建生产者
    val producer = new Producer[String, String](kafkaConfig)

    while (true) 
      //随机生成10以内ID
      val id = Random.nextInt(10)
      //创建订单成交事件
      val event = new JSONObject();
      //商品ID
      event.put("id", id)
      //商品成交价格
      event.put("price", Random.nextInt(10000))

      //发送信息
      producer.send(new KeyedMessage[String, String](topic, event.toString))
      println("Message sent: " + event)
      //随机暂停一段时间
      Thread.sleep(Random.nextInt(100))
    
  

生产者输出结果:

Message sent: "price":3959,"id":6
Message sent: "price":1579,"id":0
Message sent: "price":857,"id":6
Message sent: "price":8440,"id":1
Message sent: "price":6873,"id":6
Message sent: "price":6202,"id":2
Message sent: "price":8403,"id":6
Message sent: "price":7866,"id":2
Message sent: "price":9441,"id":5
Message sent: "price":6880,"id":4
Message sent: "price":4572,"id":5
Message sent: "price":509,"id":3
Message sent: "price":7526,"id":0

上述代码主要模拟一家店铺有十件商品,ID从0到9,每隔一小段随机时间成交一单,成交价格以分为单位,每成交一笔就像Kafka中发送一个消息,用这个生产者模拟线上的真实交易,在实际生产中成交数据可以从日志中获取。

Kafka消费者,SparkStream时实计算


object OrderConsumer 
  //Redis配置
  val dbIndex = 0
  //每件商品总销售额
  val orderTotalKey = "app::order::total"
  //每件商品上一分钟销售额
  val oneMinTotalKey = "app::order::product"
  //总销售额
  val totalKey = "app::order::all"


  def main(args: Array[String]): Unit = 

    // 创建 StreamingContext 时间片为1秒
    val conf = new SparkConf().setMaster("local").setAppName("UserClickCountStat")
    val ssc = new StreamingContext(conf, Seconds(1))

    // Kafka 配置
    val topics = Set("order")
    val brokers = "127.0.0.1:9092"
    val kafkaParams = Map[String, String](
      "metadata.broker.list" -> brokers,
      "serializer.class" -> "kafka.serializer.StringEncoder")


    // 创建一个 direct stream
    val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)

    //解析JSON
    val events = kafkaStream.flatMap(line => Some(JSON.parseObject(line._2)))

    // 按ID分组统计个数与价格总合
    val orders = events.map(x => (x.getString("id"), x.getLong("price"))).groupByKey().map(x => (x._1, x._2.size, x._2.reduceLeft(_ + _)))

    //输出
    orders.foreachRDD(x =>
      x.foreachPartition(partition =>
        partition.foreach(x => 


          println("id=" + x._1 + " count=" + x._2 + " price=" + x._3)

          //保存到Redis中
          val jedis = RedisClient.pool.getResource
          jedis.select(dbIndex)
          //每个商品销售额累加
          jedis.hincrBy(orderTotalKey, x._1, x._3)
          //上一分钟第每个商品销售额
          jedis.hset(oneMinTotalKey, x._1.toString, x._3.toString)
          //总销售额累加
          jedis.incrBy(totalKey, x._3)
          RedisClient.pool.returnResource(jedis)


        )
      ))


    ssc.start()
    ssc.awaitTermination()
  

消费者每分钟输出

id=4 count=3 price=7208
id=8 count=2 price=10152
id=7 count=1 price=6928
id=5 count=1 price=3327
id=6 count=3 price=20483
id=0 count=2 price=9882
id=2 count=2 price=9191
id=3 count=2 price=8211
id=1 count=3 price=9906

Redis客户端

object RedisClient extends Serializable 

  val redisHost = "127.0.0.1"
  val redisPort = 6379
  val redisTimeout = 30000
  lazy val pool = new JedisPool(new GenericObjectPoolConfig(), redisHost, redisPort, redisTimeout)

  lazy val hook = new Thread 
    override def run = 
      println("Execute hook thread: " + this)
      pool.destroy()
    
  
  sys.addShutdownHook(hook.run)


  def main(args: Array[String]): Unit = 
    val dbIndex = 0

    val jedis = RedisClient.pool.getResource
    jedis.select(dbIndex)
    jedis.set("test", "1")
    println(jedis.get("test"))
    RedisClient.pool.returnResource(jedis)

  



Redis结果

上一分钟商品销售额,有了这个数据就可以做成动态的图表展示时实交易额了

每件商品总销售额

总销售额,这就是天猫大屏上的1111亿了

完整代码地址

http://git.oschina.net/whzhaochao/spark-learning/tree/master/spark/src/main/scala/com/spark/stream/order

原文地址:http://blog.csdn.net/whzhaochao/article/details/77717660

以上是关于实战SparkStream+Kafka+Redis实时计算商品销售额的主要内容,如果未能解决你的问题,请参考以下文章

Flume+kakfa+sparkStream实时处理数据测试

下载基于大数据技术推荐系统实战教程(Spark ML Spark Streaming Kafka Hadoop Mahout Flume Sqoop Redis)

Nginx整合Kafka

2021精选 Java后端面试题资料大全 SpringBoot,Kafka,Mysql,Redis等PDF资料,实战项目,阿里巴巴,腾讯,字节,京东,美团,滴滴,Bilibili面试经历,实用干货

Redis和消息队列使用实战

大数据篇:flume+kafka+spark stream+hbase做日志收集