【网络工程师配置篇】——OSPF基础配置!

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了【网络工程师配置篇】——OSPF基础配置!相关的知识,希望对你有一定的参考价值。

参考技术A OSPF(Open Shortest Path First)为 IETF OSPF 工作组开发的一种基于链路状态的内部网关路由协议。OSPF 是专为 IP 开发的路由协议,直接运行在 IP 层上面,协议号为 89,采用组播方式进行 OSPF 包交换,组播地址为 224.0.0.5 (全部 OSPF 设备)和 224.0.0.6(指定设备)。当 OSPF 路由域规模较大时,一般采用分层结构,即将 OSPF 路由域分割成几个区域(AREA),区域之间通过一个骨干区域互联,每个非骨干区域都需要直接与骨干区域连接。    

   OSPF路由协议是目前主流的IGP协议,被绝大部分客户所认可并实际采用,广泛应用于各个行业,像教育,金融,医疗,政府,运营商,企业等,不论组网模型是复杂还是简单,设备数量多少,路由条目的多少,OSPF都能很好的满足各类需求,他的丰富的路由策略控制功能,分层设计也是一大优势,所以在网络部署IGP协议的时候,可优先考虑OSPF组网。

  1、拓扑图

   2、实验目的 :全网路由器运行ospf协议,使全网路由可达

   3、配置思路:

     1)搭建好拓扑图环境,标出规划好的IP地址

     2)修改网络设备默认名称、配置好IP地址

     3)配置OSPF路由,使各网段之间实现互访

   4、配置过程:

步骤一:修改网络设备默认名称、配置好IP地址

 1)配置各PC信息 (略)

2)配置路由器AR1默认名称及接口IP

<Huawei>sys     //进入系统视图模式

Enter system view, return user view with Ctrl+Z.

[Huawei]sysname AR1    //给设备修改名称

[AR1]int g0/0/0      //进入接口模式

[AR1-GigabitEthernet0/0/0]ip add 192.168.1.2 24

[AR1-GigabitEthernet0/0/0]int g0/0/1

[AR1-GigabitEthernet0/0/1]ip add 192.168.12.1 24

3)配置路由器AR2默认名称及接口IP

<Huawei>sys

Enter system view, return user view with Ctrl+Z.

[Huawei]sysname AR2

[AR2]int g0/0/0

[AR2-GigabitEthernet0/0/0]i add 192.168.12.2 24

[AR2-GigabitEthernet0/0/0]int g0/0/1

[AR2-GigabitEthernet0/0/1]ip add 192.168.23.1 24

[AR2-GigabitEthernet0/0/1]quit

4)配置路由器AR3默认名称及接口IP

<Huawei>sys

Enter system view, return user view with Ctrl+Z.

[Huawei]sysname AR3

[AR3]int g0/0/0

[AR3-GigabitEthernet0/0/0]ip add 192.168.23.2 24

[AR3-GigabitEthernet0/0/0]int g0/0/1

[AR3-GigabitEthernet0/0/1]ip add 192.168.2.2 24

[AR3-GigabitEthernet0/0/1]quit

步骤二、配置RIP路由,使各网段之间通过该链路实现互访

1)配置路由器AR1的OSPF路由

[AR1]ospf router-id 1.1.1.1    //启用OSPF,并配router id 为1.1.1.1

[AR1-ospf-1]area 0    //区域为0

[AR1-ospf-1-area-0.0.0.0]network 192.168.1.0 0.0.0.255    //发布直连网段与通配符

[AR1-ospf-1-area-0.0.0.0]network 192.168.12.0 0.0.0.255

注:通配符0.0.0表示这一部分要与192.168.1完全一致,最后为255表示可在1-255内取值,也即192.168.1.0/24这一网段

2)配置路由器AR2的OSPF路由

[AR2]ospf router-id 2.2.2.2

[AR2-ospf-1]area 0

[AR2-ospf-1-area-0.0.0.0]network 192.168.12.0 0.0.0.255

[AR2-ospf-1-area-0.0.0.0]area 1

[AR2-ospf-1-area-0.0.0.1]network 192.168.23.0 0.0.0.255

出现该提示信息说明邻居建立成功

3) 配置路由器AR3的OSPF路由

[AR3]ospf router-id 3.3.3.3

[AR3-ospf-1]area 1

[AR3-ospf-1-area-0.0.0.1]network 192.168.23.0 0.0.0.255

[AR3-ospf-1-area-0.0.0.1]network 192.168.2.0 0.0.0.255

   1、查看各路由器路由表,输入命令dis ip routing-table

1)路由器AR1:[AR1]dis ip routing-table

2)路由器AR2:[AR2]dis ip routing-table

3)路由器AR3:[AR3]dis ip routing-table

4)测试两台主机连通性:

5)最后来看一下抓包信息:

通过抓包信息,可以看出OSPF发布的hello报文也是组播报文,组播地址是224.0.0.5

至此,OSPF路由基础配置完成

[if !supportLists]1、 [endif]适用范围:应用于规模适中的网络中,最多可支持几百台NE。例如,中小型企业网络。

[if !supportLists]2、 [endif]收敛速度:收敛速度快,小于1s。

[if !supportLists]3、 [endif]扩展性:通过划分区域扩展网路支撑能力。

[if !supportLists]4、 [endif]无自环:由于OSPF根据收集到的链路状态用最短路径树算法计算路由,从算法本身保证了不会生成自环路由。

[if !supportLists]5、 [endif]区域划分:允许自治系统的网络被划分成区域来管理,区域间传送的路由信息被进一步抽象,从而减少了占用的网络带宽。

[if !supportLists]6、 [endif]组播发送:在某些类型的链路上以组播地址发送协议报文,减少对其他设备的干扰。

假装网络工程师11——ospf路径选取详解

一、背景介绍

提到路由,就一定会涉及选路,ospf与其他路由协议一样,同样存在选路,除了对比cost(metric)值,ospf协议还会对比表项,并且表项的优先级高于cost值,本文详细说明ospf协议的路径选取原则。

二、实验拓扑

技术图片
本次实验拓扑如上图所示,R2,R3环回接口模拟外部网络,通过import-route导入,每条路径的cost如标注所示

三、ospf选路详解

1.cost值比较

此时将基础配置按照上图配置好,外部路由直接使用import-route direct导入,未设置接口cost值时,此时在R1上看到去往192.168.0.0/24网段的路由如下所示:

[R1]display ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 11       Routes : 12       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       12.0.0.0/24  Direct  0    0           D   12.0.0.1        GigabitEthernet
0/0/0
       12.0.0.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
     12.0.0.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
       13.0.0.0/24  Direct  0    0           D   13.0.0.1        GigabitEthernet
0/0/1
       13.0.0.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
     13.0.0.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
    192.168.0.0/24  O_ASE   150  1           D   13.0.0.3        GigabitEthernet
0/0/1
                    O_ASE   150  1           D   12.0.0.2        GigabitEthernet
0/0/0
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

通过路由表能够看到,R1认为13.0.0.3与12.0.0.2是等价路由,都可以去往192.168.0.0/24,且cost为1(环回接口cost默认为1),但如果只是将R2的g0/0/0与R3的g0/0/1端口开销值进行更,R1去往192.168.0.0/24还是负载均衡

[R2-GigabitEthernet0/0/0]display this 
[V200R003C00]
#
interface GigabitEthernet0/0/0
 ip address 12.0.0.2 255.255.255.0 
 ospf cost 100
#
return
[R3-GigabitEthernet0/0/1]display this 
[V200R003C00]
#
interface GigabitEthernet0/0/1
 ip address 13.0.0.3 255.255.255.0 
 ospf cost 10
#
return

只有将R1上的g0/0/0与g0/0/1端口开销修改后才能看到选路后的效果,此时R1路由表去往192.168.0.0/24网段只会保留去往R3的条目

[R1]dis ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 11       Routes : 11       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       12.0.0.0/24  Direct  0    0           D   12.0.0.1        GigabitEthernet
0/0/0
       12.0.0.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
     12.0.0.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
       13.0.0.0/24  Direct  0    0           D   13.0.0.1        GigabitEthernet
0/0/1
       13.0.0.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
     13.0.0.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
    192.168.0.0/24  O_ASE   150  1           D   13.0.0.3        GigabitEthernet
0/0/1
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

原因就是R2与R3跟R1都是直连,cost为0,g0/0/1的端口开销为10,小于g0/0/0的100,所以优选从R3去往192.168.0.0/24网段。由此可以得知路径开销计算的方法:本地端口开销+到达目的地址经过所有网段的开销,以R2上12.0.0.0/24去往R3上13.0.0.0/24为例
技术图片
此时开销为R2本地g0/0/0接口开销(100)加R1上13.0.0.0/24网段端口(g0/0/1)开销(10),所以此时总的开销为110

<R2>display ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 11       Routes : 11       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       12.0.0.0/24  Direct  0    0           D   12.0.0.2        GigabitEthernet
0/0/0
       12.0.0.2/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
     12.0.0.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
       13.0.0.0/24  OSPF    10   110         D   12.0.0.1        GigabitEthernet
0/0/0
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
    192.168.0.0/24  Direct  0    0           D   192.168.0.1     LoopBack0
    192.168.0.1/32  Direct  0    0           D   127.0.0.1       LoopBack0
  192.168.0.255/32  Direct  0    0           D   127.0.0.1       LoopBack0
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

2.外部表项类型1与类型2

上述在将外部路由使用import-route引入时,没有指定类型,此时默认值2,外部表项类型有两种:分为类型1与类型2

[R3-ospf-1]import-route direct ?
  cost          Set cost
  route-policy  Route policy
  tag           Specify route tag
  type          Metric type of the imported external routes
  <cr>          Please press ENTER to execute command 
[R3-ospf-1]import-route direct type ?
  INTEGER<1-2>  Type value

其中类型2为开销值不累加,即外部端口开销值为多少,引入ospf后,在ospf域内始终为多少,上文中等价路由的cost值为1,原因就是开销不累加,只按照环回接口本身的开销值计算,如果在导入时将R2的外部表项类型改为1,此时尽管R3去往192.168.0.0/24网段的开销为101,小于R2的开销1,但在R1的路由表中,存放的依然是R2的路由

<R1>display ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 11       Routes : 11       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       12.0.0.0/24  Direct  0    0           D   12.0.0.1        GigabitEthernet
0/0/0
       12.0.0.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
     12.0.0.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/0
       13.0.0.0/24  Direct  0    0           D   13.0.0.1        GigabitEthernet
0/0/1
       13.0.0.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
     13.0.0.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet
0/0/1
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
    192.168.0.0/24  O_ASE   150  101         D   12.0.0.2        GigabitEthernet
0/0/0
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

说明在ospf路径选取时:外部表项类型1>外部表项类型2>cost值

3.区域内与区域间

此时拓扑如下图所示,首先让所有路由器在同一区域内,按照标注建立好ospf邻居,并设置好端口开销值
技术图片
此时R1如果到24.0.0.0/24网段有2条路径:

  1. R1--R3--R4,此时开销值为120
  2. R1--R3--R2--R4,此时开销值为30

所以,R1会选取第2条路径放在自己的路由表里

[R1]tracert 24.0.0.4

 traceroute to  24.0.0.4(24.0.0.4), max hops: 30 ,packet length: 40,press CTRL_C
 to break 

 1 13.0.0.3 20 ms  20 ms  20 ms 

 2 23.0.0.2 30 ms  30 ms  40 ms 

 3 24.0.0.4 30 ms  30 ms  30 ms 

说明在同一区域中,路径取cost值小的,如果此时将拓扑变为如下所示:
技术图片
R2跟R3此时成为2个abr,还是以R1到24.0.0.0/24网段为例,尽管这时 R1--R3--R2--R4开销值仍为30

[R1]display ospf routing 

     OSPF Process 1 with Router ID 1.1.1.1
          Routing Tables 

 Routing for Network 
 Destination        Cost  Type       NextHop         AdvRouter       Area
 12.0.0.0/24        50    Stub       12.0.0.1        1.1.1.1         0.0.0.0
 13.0.0.0/24        10    Stub       13.0.0.1        1.1.1.1         0.0.0.0
 23.0.0.0/24        20    Stub       13.0.0.3        3.3.3.3         0.0.0.0
 24.0.0.0/24        30    Inter-area 13.0.0.3        2.2.2.2         0.0.0.0
 34.0.0.0/24        110   Inter-area 13.0.0.3        3.3.3.3         0.0.0.0

 Total Nets: 5  
 Intra Area: 3  Inter Area: 2  ASE: 0  NSSA: 0 

但此时他会选择 R1--R3--R4,原因就是从R1--R3后,他会认为R2是区域间路由(即上图中的Inter-area),尽管开销更低,他依然会选择同区域内的R4,虽然此时路径总开销为110

[R1]display ip routing-table 
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: Public
         Destinations : 15       Routes : 15       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       12.0.0.0/24  Direct  0    0           D   12.0.0.1        Serial1/0/0
       12.0.0.1/32  Direct  0    0           D   127.0.0.1       Serial1/0/0
       12.0.0.2/32  Direct  0    0           D   12.0.0.2        Serial1/0/0
     12.0.0.255/32  Direct  0    0           D   127.0.0.1       Serial1/0/0
       13.0.0.0/24  Direct  0    0           D   13.0.0.1        Serial2/0/1
       13.0.0.1/32  Direct  0    0           D   127.0.0.1       Serial2/0/1
       13.0.0.3/32  Direct  0    0           D   13.0.0.3        Serial2/0/1
     13.0.0.255/32  Direct  0    0           D   127.0.0.1       Serial2/0/1
       23.0.0.0/24  OSPF    10   20          D   13.0.0.3        Serial2/0/1
       24.0.0.0/24  OSPF    10   30          D   13.0.0.3        Serial2/0/1
       34.0.0.0/24  OSPF    10   110         D   13.0.0.3        Serial2/0/1
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

这样就会产生一个问题:即流量从R1到R4的时候路径为R1--R3--R4

<R1>tracert -a 13.0.0.1 34.0.0.4

 traceroute to  34.0.0.4(34.0.0.4), max hops: 30 ,packet length: 40,press CTRL_C
 to break 

 1 13.0.0.3 80 ms  20 ms  20 ms 

 2 34.0.0.4 60 ms  40 ms  30 ms 

返回时路径为R4--R2--R3--R1

<R4>tracert -a 34.0.0.4 13.0.0.1

 traceroute to  13.0.0.1(13.0.0.1), max hops: 30 ,packet length: 40,press CTRL_C
 to break 

 1 24.0.0.2 30 ms  20 ms  10 ms 

 2 23.0.0.3 10 ms  10 ms  40 ms 

 3 13.0.0.1 20 ms  40 ms  20 ms 

造成来回路径不一致,如果R2,R3是2台安全设备,比如防火墙,在一些厂家(如华为)的策略中默认是不允许的,所以必须关闭原进原出的检查机制

undo firewall session link-state check  

四、总结

通过上述实验得知,ospf在进行路径选取时,优先级会按照以下方式进行(1优先级高于2):

  1. 表项:区域内>区域间>外部路由类型1>外部路由类型2
  2. cost值

以上是关于【网络工程师配置篇】——OSPF基础配置!的主要内容,如果未能解决你的问题,请参考以下文章

【网络工程师配置篇】——BGP路由基础配置(eNSP)

动态路由——OSPF高级配置 实验篇

OSPF综合应用场景

CCNA网络工程师学习进程路由器的路由配置

NA西游第五难:OSPF基础配置

华为OSPFBGP路由反射器配置详解