hadoop清理某个分区的数据
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop清理某个分区的数据相关的知识,希望对你有一定的参考价值。
参考技术A hadoop清理某个分区的数据,转载 SQL Server高级进阶之表分区删除 一、引言 删除分区又称为合并分区,简单地讲就是将多个分区的数据进行合并。现以表Sales.SalesOrder...2021年6月25日import org.apache.hadoop.util.ToolRunner; import javax.xml.crypto.Data; import java.io.IOException; /** * 数据清洗,将符合规则的和不...
大数据之Hadoop(MapReduce):Partition分区案例实操
1.需求
将统计结果按照手机归属地不同省份输出到不同文件中(分区)
(1)输入数据
phone_data.txt
1 13736230513 192.196.100.1 www.jinghang.com 2481 24681 200
2 13846544121 192.196.100.2 264 0 200
3 13956435636 192.196.100.3 132 1512 200
4 13966251146 192.168.100.1 240 0 404
5 18271575951 192.168.100.2 www.jinghang.com 1527 2106 200
6 84188413 192.168.100.3 www.jinghang.com 4116 1432 200
7 13590439668 192.168.100.4 1116 954 200
8 15910133277 192.168.100.5 www.hao123.com 3156 2936 200
9 13729199489 192.168.100.6 240 0 200
10 13630577991 192.168.100.7 www.shouhu.com 6960 690 200
11 15043685818 192.168.100.8 www.baidu.com 3659 3538 200
12 15959002129 192.168.100.9 www.jinghang.com 1938 180 500
13 13560439638 192.168.100.10 918 4938 200
14 13470253144 192.168.100.11 180 180 200
15 13682846555 192.168.100.12 www.qq.com 1938 2910 200
16 13992314666 192.168.100.13 www.gaga.com 3008 3720 200
17 13509468723 192.168.100.14 www.qinghua.com 7335 110349 404
18 18390173782 192.168.100.15 www.sogou.com 9531 2412 200
19 13975057813 192.168.100.16 www.baidu.com 11058 48243 200
20 13768778790 192.168.100.17 120 120 200
21 13568436656 192.168.100.18 www.alibaba.com 2481 24681 200
22 13568436656 192.168.100.19 1116 954 200
(2)期望输出数据
手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中
2.需求分析
3.在上个案例的基础上,增加一个分区类
package com.jinghang.mapreduce.flowsum;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
@Override
public int getPartition(Text key, FlowBean value, int numPartitions) {
// 1 获取电话号码的前三位
String preNum = key.toString().substring(0, 3);
int partition = 4;
// 2 判断是哪个省
if ("136".equals(preNum)) {
partition = 0;
}else if ("137".equals(preNum)) {
partition = 1;
}else if ("138".equals(preNum)) {
partition = 2;
}else if ("139".equals(preNum)) {
partition = 3;
}
return partition;
}
}
4.在驱动函数中增加自定义数据分区设置和ReduceTask设置
package com.jinghang.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class FlowsumDriver {
public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
args = new String[]{"e:/output1","e:/output2"};
// 1 获取配置信息,或者job对象实例
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);
// 2 指定本程序的jar包所在的本地路径
job.setJarByClass(FlowsumDriver.class);
// 3 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(FlowCountMapper.class);
job.setReducerClass(FlowCountReducer.class);
// 4 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
// 5 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
// 8 指定自定义数据分区
job.setPartitionerClass(ProvincePartitioner.class);
// 9 同时指定相应数量的reduce task
job.setNumReduceTasks(5);
// 6 指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
以上是关于hadoop清理某个分区的数据的主要内容,如果未能解决你的问题,请参考以下文章
2021年大数据Hadoop(十九):MapReduce分区