U8服务器参数配置中负载均衡如何设置

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了U8服务器参数配置中负载均衡如何设置相关的知识,希望对你有一定的参考价值。

网络的负载均衡是一种动态均衡技术,通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理均衡地分配出去。这种技术基于现有网络结构,提供了一种扩展服务器带宽和增加服务器吞吐量的廉价有效的方法,加强了网络数据处理能力,提高了网络的灵活性和可用性。 参考技术A 网络的负载均衡是一种动态均衡技术,通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理均衡地分配出去。这种技术基于现有网络结构,提供了一种扩展服务器带宽和增加服务器吞吐量的廉价有效的方法,加强了网络数据处理能力,提高了网络的灵活性和可用性。

以四台服务器为例实现负载均衡:

安装配置LVS

1. 安装前准备:

(1)首先说明,LVS并不要求集群中的服务器规格划一,相反,可以根据服务器的不同配置和负载状况,调整负载分配策略,充分利用集群环境中的每一台服务器。如下表:

Srv Eth0 Eth0:0 Eth1 Eth1:0

vs1 10.0.0.1 10.0.0.2 192.168.10.1 192.168.10.254

vsbak 10.0.0.3 192.168.10.102

real1 192.168.10.100

real2 192.168.10.101

其中,10.0.0.2是允许用户访问的IP。

(2)这4台服务器中,vs1作为虚拟服务器(即负载平衡服务器),负责将用户的访问请求转发到集群内部的real1,real2,然后由real1,real2分别处理。
Client为客户端测试机器,可以为任意操作系统。

(3)所有OS为redhat6.2,其中vs1 和vsbak 的核心是2.2.19, 而且patch过ipvs的包, 所有real
server的Subnet mask 都是24位, vs1和vsbak 的10.0.0. 网段是24 位。

2.理解LVS中的相关术语

(1) ipvsadm :ipvsadm是LVS的一个用户界面。在负载均衡器上编译、安装ipvsadm。

(2) 调度算法: LVS的负载均衡器有以下几种调度规则:Round-robin,简称rr;weighted
Round-robin,简称wrr;每个新的连接被轮流指派到每个物理服务器。Least-connected,简称lc;weighted
Least-connected,简称wlc,每个新的连接被分配到负担最小的服务器。

(3) Persistent client
connection,简称pcc,(持续的客户端连接,内核2.2.10版以后才支持)。所有来自同一个IP的客户端将一直连接到同一个物理服务器。超时时间被设置为360秒。Pcc是为https和cookie服务设置的。在这处调度规则下,第一次连接后,所有以后来自相同客户端的连接(包括来自其它端口)将会发送到相同的物理服务器。但这也会带来一个问题,因为大约有25%的Internet
可能具有相同的IP地址。

(4) Persistent port
connection调度算法:在内核2.2.12版以后,pcc功能已从一个调度算法(你可以选择不同的调度算法:rr、wrr、lc、wlc、pcc)演变成为了一个开关选项(你可以让rr、
wrr、lc、wlc具备pcc的属性)。在设置时,如果你没有选择调度算法时,ipvsadm将默认为wlc算法。 在Persistent port
connection(ppc)算法下,连接的指派是基于端口的,例如,来自相同终端的80端口与443端口的请求,将被分配到不同的物理服务器上。不幸的是,如果你需要在的网站上采用cookies时将出问题,因为http是使用80端口,然而cookies需要使用443端口,这种方法下,很可能会出现cookies不正常的情况。

(5)Load Node Feature of Linux Director:让Load balancer 也可以处理users 请求。

(6)IPVS connection synchronization。

(7)ARP Problem of LVS/TUN and LVS/DR:这个问题只在LVS/DR,LVS/TUN 时存在。

3. 配置实例

(1) 需要的软件包和包的安装:

I. piranha-gui-0.4.12-2*.rpm (GUI接口cluster设定工具);

II. piranha-0.4.12-2*.rpm;

III. ipchains-1.3.9-6lp*.rpm (架设NAT)。

取得套件或mount到光盘,进入RPMS目录进行安装:

# rpm -Uvh piranha*

# rpm -Uvh ipchains*

(2) real server群:

真正提供服务的server(如web
server),在NAT形式下是以内部虚拟网域的形式,设定如同一般虚拟网域中Client端使用网域:192.168.10.0/24
架设方式同一般使用虚拟IP之局域网络。

a. 设网卡IP

real1 :192.168.10.100/24

real2 :192.168.10.101/24

b.每台server均将default gateway指向192.168.10.254。
192.168.10.254为该网域唯一对外之信道,设定在virtual server上,使该网域进出均需通过virtual server 。

c.每台server均开启httpd功能供web server服务,可以在各real server上放置不同内容之网页,可由浏览器观察其对各real
server读取网页的情形。

d.每台server都开启rstatd、sshd、rwalld、ruser、rsh、rsync,并且从Vserver上面拿到相同的lvs.conf文件。

(3) virtual server:

作用在导引封包的对外主机,专职负责封包的转送,不提供服务,但因为在NAT型式下必须对进出封包进行改写,所以负担亦重。

a.IP设置:

对外eth0:IP:10.0.0.1 eth0:0 :10.0.0.2

对内eth1:192.168.10.1 eth1:0 :192.168.10.254

NAT形式下仅virtual server有真实IP,real server群则为透过virtual server.

b.设定NAT功能

# echo 1 >; /proc/sys/net/ipv4/ip_forward

# echo 1 >; /proc/sys/net/ipv4/ip_always_defrag

# ipchains -P forward MASQ

c.设定piranha 进入X-window中 (也可以直接编辑/etc/lvs.cf )

a).执行面板系统piranha

b).设定“整体配置”(Global Settings) 主LVS服务器主机IP:10.0.0.2, 选定网络地址翻译(预设) NAT路径名称:
192.168.10.254, NAT 路径装置: eth1:0

c).设定虚拟服务器(Virtual Servers) 添加编辑虚拟服务器部分:(Virtual
Server)名称:(任意取名);应用:http;协议: tcp;连接:80;地址:10.0..0.2;装置:eth0:0; 重入时间:180
(预设);服务延时:10 (预设);加载监控工具:ruptime (预设);调度策略:Weighted least-connections; 持续性:0
(预设); 持续性屏蔽: 255.255.255.255 (预设); 按下激活:实时服务器部分:(Real Servers); 添加编辑:名字:(任意取名);
地址: 192.168.10.100; 权重:1 (预设) 按下激活

另一架real server同上,地址:192.168.10.101。

d). 控制/监控(Controls/Monitoring)
控制:piranha功能的激活与停止,上述内容设定完成后即可按开始键激活piranha.监控器:显示ipvsadm设定之routing table内容
可立即更新或定时更新。

(4)备援主机的设定(HA)

单一virtual server的cluster架构virtual server 负担较大,提供另一主机担任备援,可避免virtual
server的故障而使对外服务工作终止;备份主机随时处于预备状态与virtual server相互侦测

a.备份主机:

eth0: IP 10.0.0.3

eth1: IP 192.168.10.102 同样需安装piranha,ipvsadm,ipchains等套件

b.开启NAT功能(同上面所述)。

c.在virtual server(10.0.0.2)主机上设定。

a).执行piranha冗余度 ;

b).按下“激活冗余度”;

冗余LVS服务器IP: 10.0.0.3;HEARTBEAT间隔(秒数): 2 (预设)

假定在…秒后进入DEAD状态: 5 (预设); HEARTBEAT连接埠: 539 (预设)

c).按下“套用”;

d).至“控制/监控”页,按下“在当前执行层添加PULSE DEAMON” ,按下“开始”;

e).在监控器按下“自动更新”,这样可由窗口中看到ipvsadm所设定的routing table,并且动态显示real
server联机情形,若real server故障,该主机亦会从监视窗口中消失。

d.激活备份主机之pulse daemon (执行# /etc/rc.d/init.d/pulse start)。

至此,HA功能已经激活,备份主机及virtual server由pulse daemon定时相互探询,一但virtual
server故障,备份主机立刻激活代替;至virtual server 正常上线后随即将工作交还virtual server。

LVS测试

经过了上面的配置步骤,现在可以测试LVS了,步骤如下:

1. 分别在vs1,real1,real2上运行/etc/lvs/rc.lvs_dr。注意,real1,real2上面的/etc/lvs
目录是vs2输出的。如果您的NFS配置没有成功,也可以把vs1上/etc/lvs/rc.lvs_dr复制到real1,real2上,然后分别运行。确保real1,real2上面的apache已经启动并且允许telnet。

2. 测试Telnet:从client运行telnet 10.0.0.2,
如果登录后看到如下输出就说明集群已经开始工作了:(假设以guest用户身份登录)

[guest@real1 guest]$——说明已经登录到服务器real1上。

再开启一个telnet窗口,登录后会发现系统提示变为:

[guest@real2 guest]$——说明已经登录到服务器real2上。

3. 测试http:从client运行iexplore http://10.0.0.2

因为在real1 和real2 上面的测试页不同,所以登录几次之后,显示出的页面也会有所不同,这样说明real server 已经在正常工作了。

LVS负载均衡中arp_ignore和arp_annonuce参数配置的含义

LVS(Linux  Virtual Server)Linux服务器集群系统

针对高可伸缩,高可用服务的需求,给予IP层和内容请求分发的负载均衡调度解决方法,并在Linux的内核中实现,将一组服务器构成一个实现可伸缩,高可用网络服务的虚拟服务器 负载均衡1.大量的兵法访问或数据流量分担到多态节点设备分别处理,减少用户的等待时间2.单个重负载的运算分担到多态节点设备上做并行处理,每个节点设备处理结束后,将结果汇总,返回给用户 负载调度器一组服务器通过高速的局域网或者地理分布的广域网相互相连,在他们的前端有一个负载均衡调度器(Load Balancer),负载均衡调度器能无缝的将网络请求调度到真实的服务器上,从而使得服务器集群的结构对用户是透明的,用户通过访问集群系统提供的网络服务,就像访问一台高性能,高可用的服务器。

 IP负载均衡技术(三种)

1.VS/NAT(网络地址转换)通过网络地址转换,调度器重写请求报文的目标地址,根据预设的调度算法,将请求分发给后端的真实服务器,真实服务器的响应报文通过调度器时,报文的源地址被重写,再返回到客户端,完成整个调度的过程 

2.VS/TUN(IP隧道模式)调度器将请求的报文通过IP隧道转发至真实服务器,而真实的服务器直接将结果返回给用户,调度器只处理请求报文,由于一般网路服务的应答大于请求,采用IP隧道模式,集群系统的最大吞吐量可以提高10倍。 

3.VS/DR(直接路由)通过改写请求报文的MAC地址,将请求发送到真是服务器,真实服务器将响应直接返回给用户,之际额路由模式可以极大的提高集群系统的伸缩性,这种方法没有IP隧道的开销,集群中真实的服务器也没有必要必须支持IP隧道协议,只是需要调度器与真实服务器有一块网卡连在同一物理网段上。 其中在这三种IP负载均衡的技术中,DR和TUN模式都需要在真实服务器上对arp_ignore和arp_announce参数进行配置,主要是实现禁止响应对VIP的ARP请求。

在lvs环境中,需要设定以下的参数

 

echo "1" > /proc/sys/net/ipv4/conf/all/arp_ignore

echo "1" > /proc/sys/net/ipv4/conf/lo/arp_ignore

echo "2" > /proc/sys/net/ipv4/conf/lo/arp_announce

echo "2" > /proc/sys/net/ipv4/conf/all/arp_announce

 

 

 

 

 

先来看看关于arp_ignore和arp_announce的有关介绍

有关arp_ignore的相关介绍:

arp_ignore - INTEGER	Define different modes for sending replies in response to	received ARP requests that resolve local target IP addresses:	0 - (default): reply for any local target IP address, configured	on any interface	1 - reply only if the target IP address is local address	configured on the incoming interface	2 - reply only if the target IP address is local address	configured on the incoming interface and both with the	sender‘s IP address are part from same subnet on this interface	3 - do not reply for local addresses configured with scope host,	only resolutions for global and link addresses are replied	4-7 - reserved	8 - do not reply for all local addresses	The max value from conf/{all,interface}/arp_ignore is used	when ARP request is received on the {interface}

              

arp_ignore:定义对目标地址为本地IP的ARP询问不同的应答模式0 

0 - (默认值): 回应任何网络接口上对任何本地IP地址的arp查询请求 

1 - 只回答目标IP地址是来访网络接口本地地址的ARP查询请求 

2 -只回答目标IP地址是来访网络接口本地地址的ARP查询请求,且来访IP必须在该网络接口的子网段内 

3 - 不回应该网络界面的arp请求,而只对设置的唯一和连接地址做出回应 

4-7 - 保留未使用 

8 -不回应所有(本地地址)的arp查询

有关arp_announce的相关介绍:

arp_announce - INTEGER	Define different restriction levels for announcing the local	source IP address from IP packets in ARP requests sent on	interface:	0 - (default) Use any local address, configured on any interface	1 - Try to avoid local addresses that are not in the target‘s	subnet for this interface. This mode is useful when target	hosts reachable via this interface require the source IP	address in ARP requests to be part of their logical network	configured on the receiving interface. When we generate the	request we will check all our subnets that include the	target IP and will preserve the source address if it is from	such subnet. If there is no such subnet we select source	address according to the rules for level 2.	2 - Always use the best local address for this target.	In this mode we ignore the source address in the IP packet	and try to select local address that we prefer for talks with	the target host. Such local address is selected by looking	for primary IP addresses on all our subnets on the outgoing	interface that include the target IP address. If no suitable	local address is found we select the first local address	we have on the outgoing interface or on all other interfaces,	with the hope we will receive reply for our request and	even sometimes no matter the source IP address we announce.	The max value from conf/{all,interface}/arp_announce is used.	Increasing the restriction level gives more chance for	receiving answer from the resolved target while decreasing	the level announces more valid sender‘s information.

 

arp_announce:对网络接口上,本地IP地址的发出的,ARP回应,作出相应级别的限制: 确定不同程度的限制,宣布对来自本地源IP地址发出Arp请求的接口 

0 - (默认) 在任意网络接口(eth0,eth1,lo)上的任何本地地址 

1 -尽量避免不在该网络接口子网段的本地地址做出arp回应. 当发起ARP请求的源IP地址是被设置应该经由路由达到此网络接口的时候很有用.此时会检查来访IP是否为所有接口上的子网段内ip之一.如果改来访IP不属于各个网络接口上的子网段内,那么将采用级别2的方式来进行处理. 

2 - 对查询目标使用最适当的本地地址.在此模式下将忽略这个IP数据包的源地址并尝试选择与能与该地址通信的本地地址.首要是选择所有的网络接口的子网中外出访问子网中包含该目标IP地址的本地地址. 如果没有合适的地址被发现,将选择当前的发送网络接口或其他的有可能接受到该ARP回应的网络接口来进行发送.

关于对arp_announce 理解的一点补充

 

Assume that a linux box X has three interfaces - eth0, eth1 and eth2. Each interface has an IP address IP0, 

IP1 and IP2. When a local application tries to send an IP packet with IP0 through the eth2.  Unfortunately, 

the target node’s mac address is not resolved. Thelinux box X will send the ARP request to know 

the mac address of the target(or the gateway). In this case what is the IP source address of the 

“ARP request message”? The IP0- the IP source address of the transmitting IP or IP2 - the outgoing

 interface?  Until now(actually just 3 hours before) ARP request uses the IP address assigned to 

the outgoing interface(IP2 in the above example) However the linux’s behavior is a little bit 

different. Actually the selection of source address in ARP request is totally configurable 

bythe proc variable “arp_announce”  

If we want to use the IP2 not the IP0 in the ARP request, we should change the value to 1 or 2. 

The default value is 0 - allow IP0 is used for ARP request.  

 

以上是关于U8服务器参数配置中负载均衡如何设置的主要内容,如果未能解决你的问题,请参考以下文章

双WAN口路由器如何设置负载均衡

使用Nginx配置TCP负载均衡

如何配置Web服务器实现负载均衡

Nginx实现负载均衡

使用Nginx配置TCP负载均衡

负载均衡是怎么做的~