人工智能基础概念
Posted 岩枭
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了人工智能基础概念相关的知识,希望对你有一定的参考价值。
人工智能的概念:机器模拟人的意识和思维
机器学习的概念:机器学习是一种统计学方法,计算机利用已有数据得出某种模型,再利用此模型预测结果。
特点:随经验的增加,效果会变好。
简单模型举例:决策树模型
预测班车到达时间的问题描述: 每天早上七点半,班车从 A 地发往 B 地,到达 B 地的时间如何准确预测?
如果你第一次乘坐班车,你的预测通常不太准。一周之后,你大概能预测出班车 8:00 左右到达 B 地;一个月之后,随着经验的增加,你还会知道,周一常堵车, 会晚 10 分钟,下雨常堵车,会晚 20 分钟。于是你画出了如下的一张树状图,如 果是周一,还下了雨,班车会 8:30 到达;如果不是周一,也没有下雨,班车会 8:00 到达。
机器学习和传统计算机运算的区别:传统计算机是基于冯诺依曼结构,指令预先 存储。运行时,CPU 从存储器里逐行读取指令,按部就班逐行执行预先安排好的 指令。其特点是,输出结果确定,因为先干什么,后干什么都已经提前写在指令 里了。
机器学习三要素:数据、算法、算力
深度学习的概念:深层次神经网络,源于对生物脑神经元结构的研究。
人脑神经网络:随着人的成长,脑神经网络是在渐渐变粗变壮。
生物学中的神经元:下图左侧有许多支流汇总在一起,生物学中称这些支流叫做 树突。树突具有接受刺激并将冲动传入细胞体的功能,是神经元的输入。这些树突汇总于细胞核又沿着一条轴突输出。轴突的主要功能是将神经冲动由胞体传至 其他神经元,是神经元的输出。人脑便是由 860 亿个这样的神经元组成,所有的 思维意识,都以它为基本单元,连接成网络实现的。
计算机中的神经元模型:1943 年,心理学家 McCulloch 和数学家 Pitts 参考了 生物神经元的结构,发表了抽象的神经元模型 MP。神经元模型是一个包含输入, 输出与计算功能的模型。输入可以类比为神经元的树突,输出可以类比为神经元 的轴突,计算可以类比为细胞核。
人工智能 Vs 机器学习 Vs 深度学习 的对比:
人工智能,就是用机器模拟人的意识和思维。
机器学习,则是实现人工智能的一种方法,是人工智能的子集。
深度学习就是深层次神经网络,是机器学习的一种实现方法,是机器学习的子集。
机器学习的典型应用
1、应用领域 计算机视觉、语音识别、自然语言处理
2、主流应用:
(1) 预测(对连续数据进行预测)
如,预测某小区 100 平米的房价卖多少钱。 根据以往数据(红色●),拟合出一条线,让它“穿过”所有的点,并且与各个点 的距离尽可能的小。
我们可以把以前的数据,输入神经网络,让他训练出一个模型,比如这张图中红 色点表示了以往的数据,虚线表示了预测出的模型 Y = ax + b ,大量历史数据 也就是面积 x 和房价 y 作为输入,训练出了模型的参数 a = 3.5, b = 150,则 你家 100 平米的房价应该是 3.5 * 100 + 150 = 500 万。 我们发现,模型不一定全是直线,也可以是曲线;我们还发现,随着数据的增多, 模型一般会更准确。
(2) 分类(对离散数据进行分类)
如,根据肿瘤患者的年龄和肿瘤大小判断良性、恶性。
红色样本为恶性,蓝色样本为良性,绿色分为哪类?
假如让计算机判断肿瘤是良性还是恶性,先要把历史数据输入到神经网络进行建 模,调节模型的参数,得到一条线把良性肿瘤和恶性肿瘤分开。比如输入患者的 年龄、肿瘤的大小 还有对应的良性肿瘤还是恶性肿瘤,使用神经网络训练模型 调整参数,再输入新的患者年龄和肿瘤大小时,计算机会直接告诉你肿瘤是良性 还是恶性。比如上图的绿色三角就属于良性肿瘤。
小结
1、机器学习,就是在任务 T 上,随经验 E 的增加,效果 P 随之增加。
2、机器学习的过程是通过大量数据的输入,生成一个模型,再利用这个生成的 模型,实现对结果的预测。
3、庞大的神经网络是基于神经元结构的,是输入乘以权重,再求和,再过非线 性函数的过程。
以上是关于人工智能基础概念的主要内容,如果未能解决你的问题,请参考以下文章