opencv 8 --背景减除 -- BackgroundSubtractorMOG2
Posted wust小吴
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了opencv 8 --背景减除 -- BackgroundSubtractorMOG2相关的知识,希望对你有一定的参考价值。
在很多基础应用中背景检出都是一个非常重要的步骤。
例如顾客统计,使用一个静态摄像头来记录进入和离开房间的人数;或者是交通摄像头,需要提取交通工具的信息等。
在所有的这些例子中,首先要将人或车单独提取出来。
技术上来说,我们需要从静止的背景中提取移动的前景
如果你有一张背景(仅有背景不含前景)图像,比如没有顾客的房间,没有交通工具的道路等,那就好办了。我们只需要在新的图像中减去背景就可以得到前景对象了。但是在大多数情况下,我们没有这样的(背景)图像,所以我们需要从我们有的图像中提取背景。如果图像中的交通工具还有影子的话, 那这个工作就更难了,因为影子也在移动,仅仅使用减法会把影子也当成前景。 真是一件很复杂的事情
为了实现这个目的科学家们已经提出了几种算法。
OpenCV 中已经包含了其中三种比较容易使用的方法
一、BackgroundSubtractorMOG(弃用)
这是一个以混合高斯模型为基础的前景/背景分割算法。它是 P.KadewTraKuPong 和 R.Bowden 在 2001 年提出的。
它使用 K(K=3 或 5)个高斯分布混合对背景像素进行建模。使用这些颜色(在整个视频中)存在时间的长短作为混合的权重。背景的颜色一般持续的时间最长,而且更加静止。
一个像素怎么会有分布呢?在 x,y平面上一个像素就是一个像素,没有分布,但是我们现在讲的背景建模是基于时间序列的,因此每一个像素点所在的位置在整个时间序列中就会有很多值,从而构成一个分布
在编写代码时,我们需要使用函数:cv2.createBackgroundSubtractorMOG() 创建一个背景对象。这个函数有些可选参数,比如要进行建模场景的时间长度,高斯混合成分的数量,阈值等。将他们全部设置为默认值。然后在整个视频中我们是需要使用backgroundsubtractor.apply() 就可以得到前景的掩模了
移动的物体会被标记为白色,背景会被标记为黑色的
前景的掩模就是白色的了
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
fgbg = cv2.createBackgroundSubtractorMOG()
while(1):
ret, frame = cap.read()
fgmask = fgbg.apply(frame)
cv2.imshow('frame',fgmask)
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
二、BackgroundSubtractorMOG2
这个也是以高斯混合模型为基础的背景/前景分割算法。它是以 2004 年 和 2006 年 Z.Zivkovic 的两篇文章为基础的。这个算法的一个特点是它为每 一个像素选择一个合适数目的高斯分布。(上一个方法中我们使用是 K 高斯分布)。
这样就会对由于亮度等发生变化引起的场景变化产生更好的适应。
和前面一样我们需要创建一个背景对象。但在这里我们我们可以选择是否检测阴影。如果 detectShadows = True(默认值),它就会检测并将影子标记出来,但是这样做会降低处理速度。影子会被标记为灰色。
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
fgbg = cv2.createBackgroundSubtractorMOG2()
while(1):
ret, frame = cap.read()
fgmask = fgbg.apply(frame)
cv2.imshow('frame',fgmask)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
BackgroundSubtractorMOG2算法的两个改进点
-阴影检测
-速度快了一倍
三、BackgroundSubtractorGMG
此算法结合了静态背景图像估计和每个像素的贝叶斯分割。这是 2012 年 Andrew_B.Godbehere,Akihiro_Matsukawa 和 Ken_Goldberg 在文章 中提出的。
它使用前面很少的图像(默认为前 120 帧)进行背景建模。使用了概率前 景估计算法(使用贝叶斯估计鉴定前景)。这是一种自适应的估计,新观察到的 对象比旧的对象具有更高的权重,从而对光照变化产生适应。一些形态学操作 如开运算闭运算等被用来除去不需要的噪音。在前几帧图像中你会得到一个黑 色窗口。
对结果进行形态学开运算对与去除噪声很有帮助
import numpy as np
import cv2
cap = cv2.VideoCapture('vtest.avi')
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
fgbg = cv2.createBackgroundSubtractorGMG()
while(1):
ret, frame = cap.read()
fgmask = fgbg.apply(frame)
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
cv2.imshow('frame',fgmask)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
以上是关于opencv 8 --背景减除 -- BackgroundSubtractorMOG2的主要内容,如果未能解决你的问题,请参考以下文章