直方图均衡化
Posted zbxzc
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了直方图均衡化相关的知识,希望对你有一定的参考价值。
Histograms - 2: Histogram Equalization
Histograms Equalization
cv2.equalizeHist()
CLAHE (Contrast Limited Adaptive Histogram Equalization)
So to solve this problem, adaptive histogram equalization is used. In this, image is divided into small blocks called “tiles” (tileSize is 8x8 by default in OpenCV). Then each of these blocks are histogram equalized as usual. So in a small area, histogram would confine to a small region (unless there is noise). If noise is there, it will be amplified. To avoid this, contrast limiting is applied. If any histogram bin is above the specified contrast limit (by default 40 in OpenCV), those pixels are clipped and distributed uniformly to other bins before applying histogram equalization. After equalization, to remove artifacts in tile borders, bilinear interpolation is applied.
import numpy as np
import cv2
img = cv2.imread('tsukuba_l.png',0)
# create a CLAHE object (Arguments are optional).
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
cl1 = clahe.apply(img)
cv2.imwrite('clahe_2.jpg',cl1)
https://docs.opencv.org/2.4.13.4/
OpenCV图像增强算法实现(直方图均衡化、拉普拉斯、Log、Gamma)
以上是关于直方图均衡化的主要内容,如果未能解决你的问题,请参考以下文章
贪玩巴斯数字图像处理基础课堂笔记——「亮度变换与空间滤波全解——加权平滑滤波器相关&卷积拉普拉斯图像增强变化直方图」 2021-10-1910-1210-25