Kotlin协程-select基础
Posted 且听真言
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kotlin协程-select基础相关的知识,希望对你有一定的参考价值。
一、select是什么?
select——>用于选择更快的结果。
基于场景理解
比如客户端要查询一个商品的详情。两个服务:缓存服务,速度快但信息可能是旧的;网络服务,速度慢但信息一定是最新的。
如何实现上述逻辑:
runBlocking
suspend fun getCacheInfo(productId: String): Product
delay(100L)
return Product(productId, 8.9)
suspend fun getNetworkInfo(productId: String): Product?
delay(200L)
return Product(productId, 8.8)
fun updateUI(product: Product)
println("$product.productId : $product.price")
val startTime = System.currentTimeMillis()
val productId = "001"
val cacheInfo = getCacheInfo(productId)
if (cacheInfo != null)
updateUI(cacheInfo)
println("Time cost: $System.currentTimeMillis() - startTime")
val latestInfo = getNetworkInfo(productId)
if (latestInfo != null)
updateUI(latestInfo)
println("Time cost: $System.currentTimeMillis() - startTime")
001 : 8.9
Time cost: 113
001 : 8.8
Time cost: 324
上述程序分为四步:第一步:查询缓存信息;第二步:缓存服务返回信息,更新 UI;第三步:查询网络服务;第四步:网络服务返回信息,更新 UI。
用户可以第一时间看到商品的信息,虽然它暂时会展示旧的信息,但由于我们同时查询了网络服务,旧缓存信息也马上会被替代成新的信息。但是可能存在一些问题:如果程序卡在了缓存服务,获取网络服务就会无法执行。是因为 getCacheInfo() 它是一个挂起函数,只有这个程序执行成功以后,才可以继续执行后面的任务。能否做到:两个挂起函数同时执行,谁返回的速度更快,就选择哪个结果。答案是使用select。
runBlocking
suspend fun getCacheInfo(productId: String): Product
delay(100L)
return Product(productId, 8.9)
suspend fun getNetworkInfo(productId: String): Product
delay(200L)
return Product(productId, 8.8)
fun updateUI(product: Product)
println("$product.productId : $product.price")
val startTime = System.currentTimeMillis()
val productId = "001"
val product = select<Product?>
async
getCacheInfo(productId)
.onAwait
it
async
getNetworkInfo(productId)
.onAwait
it
if (product != null)
updateUI(product)
println("Time cost: $System.currentTimeMillis() - startTime")
001 : 8.9
Time cost: 134
Process finished with exit code 0
由于缓存的服务更快,所以,select 确实帮我们选择了更快的那个结果。我们的 select 可以在缓存服务出现问题的时候,灵活选择网络服务的结果。从而避免用户等待太长的时间,得到糟糕的体验。
在上述代码中,用户大概率是会展示旧的缓存信息。但实际场景下,我们是需要进一步更新最新信息的。
runBlocking
suspend fun getCacheInfo(productId: String): Product
delay(100L)
return Product(productId, 8.9)
suspend fun getNetworkInfo(productId: String): Product
delay(200L)
return Product(productId, 8.8)
fun updateUI(product: Product)
println("$product.productId : $product.price")
val startTime = System.currentTimeMillis()
val productId = "001"
val cacheDeferred = async
getCacheInfo(productId)
val latestDeferred = async
getNetworkInfo(productId)
val product = select<Product?>
cacheDeferred.onAwait
it.copy(isCache = true)
latestDeferred.onAwait
it.copy(isCache = false)
if (product != null)
updateUI(product)
println("Time cost: $System.currentTimeMillis() - startTime")
if (product != null && product.isCache)
val latest = latestDeferred.await() ?: return@runBlocking
updateUI(latest)
println("Time cost: $System.currentTimeMillis() - startTime")
001 : 8.9
Time cost: 124
001 : 8.8
Time cost: 228
Process finished with exit code 0
如果是多个服务的缓存场景呢?
runBlocking
val startTime = System.currentTimeMillis()
val productId = "001"
suspend fun getCacheInfo(productId: String): Product
delay(100L)
return Product(productId, 8.9)
suspend fun getCacheInfo2(productId: String): Product
delay(50L)
return Product(productId, 8.85)
suspend fun getNetworkInfo(productId: String): Product
delay(200L)
return Product(productId, 8.8)
fun updateUI(product: Product)
println("$product.productId : $product.price")
val cacheDeferred = async
getCacheInfo(productId)
val cacheDeferred2 = async
getCacheInfo2(productId)
val latestDeferred = async
getNetworkInfo(productId)
val product = select<Product?>
cacheDeferred.onAwait
it.copy(isCache = true)
cacheDeferred2.onAwait
it.copy(isCache = true)
latestDeferred.onAwait
it.copy(isCache = true)
if (product != null)
updateUI(product)
println("Time cost: $System.currentTimeMillis() - startTime")
if (product != null && product.isCache)
val latest = latestDeferred.await()
updateUI(latest)
println("Time cost: $System.currentTimeMillis() - startTime")
Log
001 : 8.85
Time cost: 79
001 : 8.8
Time cost: 229
Process finished with exit code 0
select 代码模式,可以提升程序的整体响应速度。
二、select 和 Channel
runBlocking
val startTime = System.currentTimeMillis()
val channel1 = produce
send(1)
delay(200L)
send(2)
delay(200L)
send(3)
val channel2 = produce
delay(100L)
send("a")
delay(200L)
send("b")
delay(200L)
send("c")
channel1.consumeEach
println(it)
channel2.consumeEach
println(it)
println("Time cost: $System.currentTimeMillis() - startTime")
Log
1
2
3
a
b
c
Time cost: 853
Process finished with exit code 0
上述代码串行执行,可以使用select进行优化。
runBlocking
val startTime = System.currentTimeMillis()
val channel1 = produce
send(1)
delay(200L)
send(2)
delay(200L)
send(3)
val channel2 = produce
delay(100L)
send("a")
delay(200L)
send("b")
delay(200L)
send("c")
suspend fun selectChannel(
channel1: ReceiveChannel<Int>,
channel2: ReceiveChannel<String>
): Any
return select<Any>
if (!channel1.isClosedForReceive)
channel1.onReceive
it.also
println(it)
if (!channel2.isClosedForReceive)
channel2.onReceive
it.also
println(it)
repeat(6)
selectChannel(channel1, channel2)
println("Time cost: $System.currentTimeMillis() - startTime")
Log
1
a
2
b
3
c
Time cost: 574
Process finished with exit code 0
从代码执行结果可以发现程序的执行耗时有效减少。onReceive 是 Channel 在 select 当中的语法,当 Channel 当中有数据以后,它就会被回调,通过这个 Lambda,将结果传出去。 执行了 6 次 select,目的是要把两个管道中的所有数据都消耗掉。
如果Channel1不生产数据了,程序会如何执行?
runBlocking
val startTime = System.currentTimeMillis()
val channel1 = produce<String>
delay(5000L)
val channel2 = produce<String>
delay(100L)
send("a")
delay(200L)
send("b")
delay(200L)
send("c")
suspend fun selectChannel(
channel1: ReceiveChannel<String>,
channel2: ReceiveChannel<String>
): String = select<String>
channel1.onReceive
it.also
println(it)
channel2.onReceive
it.also
println(it)
repeat(3)
selectChannel(channel1, channel2)
println("Time cost: $System.currentTimeMillis() - startTime")
Log
a
b
c
Time cost: 570
Process finished with exit code 0
如果不知道Channel的个数,如何避免ClosedReceiveChannelException?
使用:onReceiveCatching
runBlocking
val startTime = System.currentTimeMillis()
val channel1 = produce<String>
delay(5000L)
val channel2 = produce<String>
delay(100L)
send("a")
delay(200L)
send("b")
delay(200L)
send("c")
suspend fun selectChannel(
channel1: ReceiveChannel<String>,
channel2: ReceiveChannel<String>
): String = select<String>
channel1.onReceiveCatching
it.getOrNull() ?: "channel1 is closed!"
channel2.onReceiveCatching
it.getOrNull() ?: "channel2 is closed!"
repeat(6)
val result = selectChannel(channel1, channel2)
println(result)
println("Time cost: $System.currentTimeMillis() - startTime")
Log
a
b
c
channel2 is closed!
channel2 is closed!
channel2 is closed!
Time cost: 584
Process finished with exit code 0
得到所有结果以后,程序不会立即退出,因为 channel1 一直在 delay()。
所以我们需要在6次repeat之后将channel关闭。
runBlocking
val startTime = System.currentTimeMillis()
val channel1 = produce<String>
delay(15000L)
val channel2 = produce<String>
delay(100L)
send("a")
delay(200L)
send("b")
delay(200L)
send("c")
suspend fun selectChannel(
channel1: ReceiveChannel<String>,
channel2: ReceiveChannel<String>
): String = select<String>
channel1.onReceiveCatching
it.getOrNull() ?: "channel1 is closed!"
channel2.onReceiveCatching
it.getOrNull() ?: "channel2 is closed!"
repeat(6)
val result = selectChannel(channel1, channel2)
println(result)
channel1.cancel()
channel2.cancel()
println("Time cost: $System.currentTimeMillis() - startTime")
Log
a
b
c
channel2 is closed!
channel2 is closed!
channel2 is closed!
Time cost: 612
Process finished with exit code 0
Deferred、Channel 的 API:
public interface Deferred : CoroutineContext.Element
public suspend fun join()
public suspend fun await(): T
public val onJoin: SelectClause0
public val onAwait: SelectClause1<T>
public interface SendChannel<in E>
public suspend fun send(element: E)
public val onSend: SelectClause2<E, SendChannel<E>>
public interface ReceiveChannel<out E>
public suspend fun receive(): E
public suspend fun receiveCatching(): ChannelResult<E>
public val onReceive: SelectClause1<E>
public val onReceiveCatching: SelectClause1<ChannelResult<E>>
当 select 与 Deferred 结合使用的时候,当并行的 Deferred 比较多的时候,你往往需要在得到一个最快的结果以后,去取消其他的 Deferred。
通过 async 并发执行协程,也可以借助 select 得到最快的结果。
runBlocking
suspend fun <T> fastest(vararg deferreds: Deferred<T>): T = select
fun cancelAll() = deferreds.forEach
it.cancel()
for (deferred in deferreds)
deferred.onAwait
cancelAll()
it
val deferred1 = async
delay(100L)
println("done1")
"result1"
val deferred2 = async
delay(200L)
println("done2")
"result2"
val deferred3 = async
delay(300L)
println("done3")
"result3"
val deferred4 = async
delay(400L)
println("done4")
"result4"
val deferred5 = async
delay(5000L)
println("done5")
"result5"
val fastest = fastest(deferred1, deferred2, deferred3, deferred4, deferred5)
println(fastest)
Log
done1
result1
Process finished with exit code 0
以上是关于Kotlin协程-select基础的主要内容,如果未能解决你的问题,请参考以下文章
Kotlin 协程协程中的多路复用技术 ② ( select 函数原型 | SelectClauseN 事件 | 查看挂起函数是否支持 select )
Kotlin 协程协程底层实现 ① ( Kotlin 协程分层架构 | 基础设施层 | 业务框架层 | 使用 Kotlin 协程基础设施层标准库 Api 实现协程 )
Kotlin 协程协程底层实现 ① ( Kotlin 协程分层架构 | 基础设施层 | 业务框架层 | 使用 Kotlin 协程基础设施层标准库 Api 实现协程 )