TCP 的自然律

Posted dog250

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TCP 的自然律相关的知识,希望对你有一定的参考价值。

周一傍晚发了一则朋友圈:

放大配图,来自:How to transfer, share and send big files fast

我对此事的看法:“想高效利用庞大的资源需要的代价和资源规模的增加并不是线性的,而且指数的,下凸曲线”。这个看法来自于一本书,《规模:复杂世界的简单法则》。

看来,背后还是自然律。OK,看下这个配图是如何得到的。

基于 TCP 标准 AIMD 行为,简单推导下宏观吞吐公式。以下图,设 AI 参数为 a,MD 参数为 b,丢包率为 P:

可得,一个 AIMD 周期发送总量 N:

N = ( b W a + 1 ) ( 1 − b ) W + 1 2 ( b W a + 1 ) ( 1 − b ) W N=(\\dfracbWa+1)(1−b)W+\\dfrac12(\\dfracbWa+1)(1−b)W N=(abW+1)(1b)W+21(abW+1)(1b)W

一个 AIMD 周期丢 1 个包:

P = 1 N P=\\dfrac1N P=N1

代入 N,则:

P = 2 a b ( 2 − b ) W 2 + a ( 2 − b ) W P=\\dfrac2ab(2-b)W^2+a(2-b)W P=b(2b)W2+a(2b)W2a

反解 W。一个忽略 W 一次项的近似解为:

W = 2 a b ( 2 − b ) P W=\\sqrt\\dfrac2ab(2-b)P W=b(2b)P2a

求一个 AIMD 周期平均吞吐率。以 1 个 RTT 为测速区间,最小发送量为 (1-b)W,最大发送量为 W,则吞吐率 T:

T = ( 1 − b ) W + W 2 R T T = 2 − b 2 × R T T W T=\\dfrac\\dfrac(1-b)W+W2RTT=\\dfrac2-b2\\times RTTW T=RTT2(1b)W+W=2×RTT2bW

代入 W:

T = 1 R T T a ( 2 − b ) 2 b 1 P T=\\dfrac1RTT\\sqrt\\dfraca(2-b)2b\\dfrac1\\sqrtP T=RTT12ba(2b) P 1

设 T,RTT, P,分别为 z,x,y,由于 a, b 均为常数,不影响形状,Geogebra 3D 画图:

这就是朋友圈配图(离散版本)的连续版本,平滑包络线连接配图各点,与此形状一致。

以上就是 TCP 鸟样子背后自然规律的数学推导。如何理解这个规律呢?

能举起自身重量 300 倍的蚂蚁变成经理这么大也和经理一个鸟样,这个例子说过很多次。换个别的,同样来自《规模》。

增加暖气片数量带来的制暖效率的增速远慢于需要加热的空间体积,因为暖气片是二维的,空间是三维的。

换算到 AIMD TCP,吞吐增加所带来带宽利用率的增速远慢于 BDP 的增加。因为无论 RTT 增加还是丢包率增加,其作用都在 BDP 二维管道内延伸,而 AIMD TCP 吞吐的依据则仅来自于 ACK 信号,换句话说,AIMD 只需要 ACK,不需要时间。

一维量的增速远慢于二维量的增速。这是核心。

把时间和丢包维度考虑进来,就是 BBR 带宽利用率高的原因:

  • BBR 不在对 ACK 到达进行反应,二是对 packet round 内的速率进行反应。
  • 为对抗丢包,BBR 同样引入时间鲁棒性,坚持丢包前速率,取代立即反应。
  • 为弥补丢包损失,BBR 以 25% 增益补损,BBR 竟能忍受高达 20% 丢包率。

理想中的 BBR Throughput/Rrr/Loss 是(来自:https://www.ibm.com/cloud/smartpapers/aspera/transfer-large-files/):

现实中 BBR 据此非常遥远。也许是 TCP 固有缺陷导致,也许是别的。

经常有人问,40% 的增益是否能容忍 40% Loss,非常不对。TCP 端到端的本质使它无法识别 Loss 过程,40% 增益意味着 BBR 以 140% 的速率发送,这个增益将放大 MIMD。

无论怎样,BBR 仍保留了无视现实的假设。如多流场景下,当 buffer 开始 bloat,只要 probe 都会带来 delivery rate 增益,并不存在 BBR 假设的 btlBW*RTprop 上界的约束。

准备写个朴素的 tcp_caohejing 算法,实现一个新思路。但下回分解。

居家办公,省掉了通勤时间,吃完晚饭出去探视了家附近的烂尾楼,唏嘘。归家继续思考漕河泾算法,作为前奏把周一傍晚朋友圈里的配图解释一下。本文除了漕河泾算法的引,也算一本极佳的书《规模》的读后感。

浙江温州皮鞋湿,下雨进水不会胖。

以上是关于TCP 的自然律的主要内容,如果未能解决你的问题,请参考以下文章

TCP 漕河泾算法(tcp_caohejing)

TCP 漕河泾算法(tcp_caohejing)

五角场之殇。曾与张江漕河泾紫竹齐名。如今,上海四大IT科技园是否还在?

✔BAD8367模块 500M 45DB可变增益 高线性 低失真 VGA||AGC

✔BAD8367模块 500M 45DB可变增益 高线性 低失真 VGA||AGC

坐标上海徐汇漕河泾(9 号线旁),招聘前端/Java/测试,3D 打印智能制造方向,杜绝 996