探秘malloc是如何申请内存的
Posted Loopers
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了探秘malloc是如何申请内存的相关的知识,希望对你有一定的参考价值。
今天分析下malloc申请内存时都发生了什么,Let dot it
我们都清楚malloc申请的内存不是立刻就建立虚拟地址和物理地址的映射的,当int *p = malloc(100*1024)执行这条指令之后,只是在用户空间给程序开辟一段100K左右的大小,然后就返回这段空间的首地址给程序员。
当我们尝试第一次读或者写的时候,就会经过如下步骤的:
- CPU将此虚拟地址,送到MMU上去
- MMU会做虚拟到物理地址的转化
- MMU在操作时发现,此虚拟地址还没有建立物理地址关系,则发生exception
- CPU则会跳转到exception table,根据出错的类型执行相应的调用函数
- 此场景就会调用do_translation_fault
我们通过一个简单的malloc例子来分析
#include <stdio.h>
#include <malloc.h>
#include <unistd.h>
int main()
int i=0;
char *malloc_data=malloc(1024*200);
printf("malloc address=0x%lx\\n",malloc_data);
getchar();
for(i=0; i<100; i++)
malloc_data[i] = i+1;
for(i=0; i<100; i++)
printf("data=%d\\n",malloc_data[i]);
return 0;
当执行此代码后,会在用户空间分配各个虚拟内存区域
可以看到虚拟地址是属于红色框之类的。有人就会说malloc为啥的不属于heap? 当malloc申请的内存小于128K的时候是属于heap的,自己可以动手实验下。当申请的内存大于128K之后,就会从mmap区域申请内存的。
当我们尝试写这个虚拟地址的时候,就会发生上面一系列操作,我通过修改内核的代码,当在申请此虚拟地址的时候会发生panic,然后抓到dump。我们通过dump分析
可以dump的时候此地址和上面例子的地址有差别,不影响我们分析。分析dump我们以dump的地址为准。
当写malloc申请的内存0x76143BC000的时候,就会发生缺页异常,发生page_fault。 先来看dump的调用栈
-005|panic()
-006|do_anonymous_page(inline)
-006|handle_pte_fault(vmf = 0xFFFFFF80202A3BF0)
-007|handle_mm_fault(vma = 0xFFFFFFE314E27310, address = 0x00000076143BC000, flags = 0x55)
-008|do_page_fault(addr = 0x00000076143BC008, esr = 0x92000047, regs = 0xFFFFFF80202A3EC0)
-009|test_ti_thread_flag(inline)
-009|do_translation_fault(addr = 0x00000076143BC008, esr = 0x92000047, regs = 0xFFFFFF80202A3EC0)
-010|do_mem_abort(addr = 0x00000076143BC008, esr = 0x92000047, regs = 0xFFFFFF80202A3EC0)
-011|el0_da(asm)
-->|exception
具体为啥会这样,大家可以看下我前面的ARM64异常处理流程,咋们根据调用栈分析代码。
static int __kprobes do_translation_fault(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
if (addr < TASK_SIZE)
return do_page_fault(addr, esr, regs);
do_bad_area(addr, esr, regs);
return 0;
这里是判断申请的内存属于用户空间还是内核空间,用户空间的大小是TASK_SIZE的。小于此值就是用户空间
-008|do_page_fault(
| addr_=_0x00000076143BC008, //这就是我们上层传递下来的值,后面会将低12位清空的。
| esr = 0x92000047, //出错状态寄存器
| regs = 0xFFFFFF80202A3EC0)
| vma = 0xFFFFFFE314E27310 //这段虚拟内存区域的vma
| mm_flags = 0x55
| vm_flags = 0x2
| major = 0x0
| tsk = 0xFFFFFFE300786640 //所属的task_struct
| mm = 0xFFFFFFE2EBB33440 //所属的mm_struct
-009|test_ti_thread_flag(inline)
-009|do_translation_fault(
| addr = 0x00000076143BC008,
| esr = 0x92000047,
| regs = 0xFFFFFF80202A3EC0)
-010|do_mem_abort(
| addr = 0x00000076143BC008,
| esr = 0x92000047,
| regs = 0xFFFFFF80202A3EC0)
-011|el0_da(asm)
-->|exception
此函数有点长,我们去掉不相关的,保留和我们有用的
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
struct task_struct *tsk;
struct mm_struct *mm;
struct siginfo si;
vm_fault_t fault, major = 0;
unsigned long vm_flags = VM_READ | VM_WRITE;
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
struct vm_area_struct *vma = NULL;
tsk = current;
mm = tsk->mm;
/*
* If we're in an interrupt or have no user context, we must not take
* the fault.
*/
if (faulthandler_disabled() || !mm) //如果在中断上下文或者是内核线程,就调用no_context处理
goto no_context;
if (user_mode(regs)) //如果是用户模式,则需要设置mm_flags位FAULT_FLAG_USER
mm_flags |= FAULT_FLAG_USER;
if (is_el0_instruction_abort(esr)) //如果是el0的指令异常,设置flag
vm_flags = VM_EXEC;
else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) //esr寄存器判断是否有写权限之类的
vm_flags = VM_WRITE;
mm_flags |= FAULT_FLAG_WRITE;
if (addr < TASK_SIZE && is_el1_permission_fault(esr, regs, addr)) //地址属于用户空间,但是出错是在内核空间,也就是内核空间访问了用户空间的地址,报错
/* regs->orig_addr_limit may be 0 if we entered from EL0 */
if (regs->orig_addr_limit == KERNEL_DS)
die_kernel_fault("access to user memory with fs=KERNEL_DS",
addr, esr, regs);
if (is_el1_instruction_abort(esr))
die_kernel_fault("execution of user memory",
addr, esr, regs);
if (!search_exception_tables(regs->pc))
die_kernel_fault("access to user memory outside uaccess routines",
addr, esr, regs);
if (!vma || !can_reuse_spf_vma(vma, addr)) //如果不存在vma,则通过地址找到vma,vma在mm_struct的红黑树中,只需要找此地址属于start和end范围内,就确定了vma
vma = find_vma(mm, addr);
fault = __do_page_fault(vma, addr, mm_flags, vm_flags, tsk); //真正处理do_page_fault
major |= fault & VM_FAULT_MAJOR; //major意思是当发现此地址的转化关系在页表中,但是内存就找不到。说明swap到磁盘或者swap分区了。从磁盘将文件swap进来叫major,从swap分区叫minor
if (fault & VM_FAULT_RETRY) //是否需要重试retry
/*
* If we need to retry but a fatal signal is pending,
* handle the signal first. We do not need to release
* the mmap_sem because it would already be released
* in __lock_page_or_retry in mm/filemap.c.
*/
if (fatal_signal_pending(current))
if (!user_mode(regs))
goto no_context;
return 0;
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
* starvation.
*/
if (mm_flags & FAULT_FLAG_ALLOW_RETRY)
mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
mm_flags |= FAULT_FLAG_TRIED;
/*
* Do not try to reuse this vma and fetch it
* again since we will release the mmap_sem.
*/
vma = NULL;
goto retry;
up_read(&mm->mmap_sem);
done:
/*
* Handle the "normal" (no error) case first.
*/
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
VM_FAULT_BADACCESS))))
/*
* Major/minor page fault accounting is only done
* once. If we go through a retry, it is extremely
* likely that the page will be found in page cache at
* that point.
*/
if (major) //增减major的引用计数
tsk->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
addr);
else
tsk->min_flt++; //增加minor的引用计数
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
addr);
return 0;
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (!user_mode(regs))
goto no_context;
if (fault & VM_FAULT_OOM) //也就是没有内存了
/*
* We ran out of memory, call the OOM killer, and return to
* userspace (which will retry the fault, or kill us if we got
* oom-killed).
*/
pagefault_out_of_memory();
return 0;
clear_siginfo(&si);
si.si_addr = (void __user *)addr;
if (fault & VM_FAULT_SIGBUS)
/*
* We had some memory, but were unable to successfully fix up
* this page fault.
*/
si.si_signo = SIGBUS;
si.si_code = BUS_ADRERR;
else if (fault & VM_FAULT_HWPOISON_LARGE)
unsigned int hindex = VM_FAULT_GET_HINDEX(fault);
si.si_signo = SIGBUS;
si.si_code = BUS_MCEERR_AR;
si.si_addr_lsb = hstate_index_to_shift(hindex);
else if (fault & VM_FAULT_HWPOISON)
si.si_signo = SIGBUS;
si.si_code = BUS_MCEERR_AR;
si.si_addr_lsb = PAGE_SHIFT;
else
/*
* Something tried to access memory that isn't in our memory
* map.
*/
si.si_signo = SIGSEGV; //这就是写应用程序,出错后出现的段错误,内核直接回杀死此进程的
si.si_code = fault == VM_FAULT_BADACCESS ?
SEGV_ACCERR : SEGV_MAPERR;
__do_user_fault(&si, esr); //信号告知用户层
return 0;
no_context:
__do_kernel_fault(addr, esr, regs); //处理内核的部分
return 0;
- 此函数主要是确认下当前错误是来自内核还是应用层
- 当调用__do_page_fault处理完毕后,就会对结果做进一步处理
- 如果用户空间,则后发信号的方式告知的。
- 内核的话专门有__do_kernel_fault去处理的
static int __do_page_fault(struct vm_area_struct *vma, unsigned long addr,
unsigned int mm_flags, unsigned long vm_flags,
struct task_struct *tsk)
vm_fault_t fault;
fault = VM_FAULT_BADMAP;
if (unlikely(!vma))
goto out;
if (unlikely(vma->vm_start > addr))
goto check_stack;
/*
* Ok, we have a good vm_area for this memory access, so we can handle
* it.
*/
good_area:
/*
* Check that the permissions on the VMA allow for the fault which
* occurred.
*/
if (!(vma->vm_flags & vm_flags))
fault = VM_FAULT_BADACCESS;
goto out;
return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
check_stack:
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
goto good_area;
out:
return fault;
- 检查vma,以及起始地址
- 如果起始地址小于addr,则调到check_stack处,此情况针对栈需要扩张的情况
- 确定vma的权限,比如此vma的权限是没有写的,只读的。如果你去写的话就会报VM_FAULT_BADACCESS错误
- 则后续会调用handle_mm_fault处理
vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
unsigned int flags)
vm_fault_t ret;
__set_current_state(TASK_RUNNING);
if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, //权限错误,直接SIGSEGV,段错误
flags & FAULT_FLAG_INSTRUCTION,
flags & FAULT_FLAG_REMOTE))
return VM_FAULT_SIGSEGV;
if (unlikely(is_vm_hugetlb_page(vma))) //巨型页,先不考虑
ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
else
ret = __handle_mm_fault(vma, address, flags); //正常处理流程
return ret;
继续分析__handle_mm_fault函数
static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
struct vm_fault vmf = //根据参数初始化vma_fault结构
.vma = vma,
.address = address & PAGE_MASK,
.flags = flags,
.pgoff = linear_page_index(vma, address),
.gfp_mask = __get_fault_gfp_mask(vma),
.vma_flags = vma->vm_flags,
.vma_page_prot = vma->vm_page_prot,
;
unsigned int dirty = flags & FAULT_FLAG_WRITE;
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgd;
p4d_t *p4d;
vm_fault_t ret;
pgd = pgd_offset(mm, address); //根据虚拟地址和mm_struct结构找到pgd
p4d = p4d_alloc(mm, pgd, address); //再接着找到p4d,模拟板目前只有3级页表,也就是没有p4d和pud,这里的话p4d==pgd
if (!p4d)
return VM_FAULT_OOM;
vmf.pud = pud_alloc(mm, p4d, address);
if (!vmf.pud)
return VM_FAULT_OOM;
vmf.pmd = pmd_alloc(mm, vmf.pud, address);
if (!vmf.pmd)
return VM_FAULT_OOM;
return handle_pte_fault(&vmf);
- pgd = pgd_offset(mm, address); 根据虚拟地址和mm_struct→pdg基地址就会算出pgd的值
- p4d = p4d_alloc(mm, pgd, address); 分配p4d,目前没用p4d,#define p4d_alloc(mm, pgd, address) (pgd) 直接返回的是pgd的值
- vmf.pud = pud_alloc(mm, p4d, address);
#define pud_alloc(mm, p4d, address) \\
((unlikely(pgd_none(*(p4d))) && __pud_alloc(mm, p4d, address)) ? \\
NULL : pud_offset(p4d, address))
- 是没有p4d的时候,则分配pud,这里因为p4d=pgd,则最后返回的是pgd里面的值
- vmf.pmd = pmd_alloc(mm, vmf.pud, address); 分配pmd, 会根据pud的值算出pmd的值
- 处理pte, 也就是说此函数就是算pgd, p4d, pud, pmd,保存到vm_fault结构体中。
来看下dump中算好的结果。
-006|handle_pte_fault(
| vmf = 0xFFFFFF80202A3BF0 -> (
| vma = 0xFFFFFFE314E27310,
| flags = 0x55,
| gfp_mask = 0x006000C0,
| pgoff = 0x076143BC,
| address = 0x00000076143BC000,
| sequence = 0x2,
| orig_pmd = (pmd = 0x0),
| pmd = 0xFFFFFFE2E5E5D508 -> (
| pmd_=_0xE5E5A003),
| pud = 0xFFFFFFE2E5D8BEC0 -> (
| pgd = (pgd = 0xE5E5D003)),
| orig_pte = (pte = 0x0),
| cow_page = 0x0,
| memcg = 0x0,
| page = 0x0,
| pte = 0xFFFFFFE2E5E5ADE0 -> (
| pte = 0x00E800026F281F53),
| ptl = 0xFFFFFFE3698EC318,
| prealloc_pte = 0x0,
| vma_flags = 0x00100073,
| vma_page_prot = (pgprot = 0x0060000000000FD3)))
-007|handle_mm_fault(
| vma = 0xFFFFFFE314E27310,
| address = 0x00000076143BC000,
| flags = 0x55)
转化过程可以参考我的ARM64虚拟地址到物理地址转化文档(手动玩转虚拟地址到物理地址转化)
虚拟地址:0x00000076143BC000
mm_struct→pgd = rd(0xFFFFFFE2E5D8B000) = 0xE5D80003
pdg_index = (0x00000076143BC000 >> 30) & (0x200 - 1) = 0x01D8
pdg = 0xFFFFFFE2E5D8B000+ 0x01D8*8 = 0xFFFFFFE2E5D8BEC0 = rd(0xFFFFFFE2E5D8BEC0 ) = 0xE5E5D003
pmd_index = (0x00000076143BC000 >> 21) & (0x1FF ) = 0xA1
pmd = 0xE5E5D003+ 0xA1 * 8 = 0xE5E5D000+ 0xA1 * 8 = 0xE5E5D508 = rd(C:0xE5E5D508) = E5E5A003
通过我们手动计算和dump里面的值是一样的。继续分析代码。
static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
pte_t entry;
int ret = 0;
if (unlikely(pmd_none(*vmf->pmd))) //如果pmd里面的值是0的话,说明了pte是没有的,则将vmf->pte设置为NULL
vmf->pte = NULL;
else if (!(vmf->flags & FAULT_FLAG_SPECULATIVE))
....
if (!vmf->pte)
if (vma_is_anonymous(vmf->vma))
return do_anonymous_page(vmf);
else
return do_fault(vmf);
if (!pte_present(vmf->orig_pte))
return do_swap_page(vmf);
entry = vmf->orig_pte;
if (vmf->flags & FAULT_FLAG_WRITE)
if (!pte_write(entry))
return do_wp_page(vmf);
entry = pte_mkdirty(entry);
entry = pte_mkyoung(entry);
if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
vmf->flags & FAULT_FLAG_WRITE))
update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
else
/*
* This is needed only for protection faults but the arch code
* is not yet telling us if this is a protection fault or not.
* This still avoids useless tlb flushes for .text page faults
* with threads.
*/
if (vmf->flags & FAULT_FLAG_WRITE)
flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
if (vmf->flags & FAULT_FLAG_SPECULATIVE)
ret = VM_FAULT_RETRY;
unlock:
pte_unmap_unlock(vmf->pte, vmf->ptl);
return ret;
- 如果pmd里面的值是NULL,所以pte不存在,设置pte为NULL
- 判断此vma是否是匿名页,通过判断vma→vm_ops是否为NULL,
啥是匿名页:
- malloc申请的内存
- stack里申请的内存
- mmap申请的匿名的内存映射
以上三种都属于匿名页
- 很明显我们是malloc申请的内存,就会走到匿名页里面去
- 如果不是匿名页,那就是有文件背景的页,就是和映射的时候有对应的实体,比如磁盘中的文件
- pte_present(vmf→orig_pte) 页表存在,页表项不存在,所以swap出去了,需要swap回来
- 如果页表有写FAULT_FLAG_WRITE权限,则更新脏页flag
- pte_mkyoung(entry); 意思是页表刚刚访问过,比较young
- 设置访问权限,更新mmu cache等
以上是关于探秘malloc是如何申请内存的的主要内容,如果未能解决你的问题,请参考以下文章