Codevs 1228 苹果树

Posted Soda

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Codevs 1228 苹果树相关的知识,希望对你有一定的参考价值。

1228 苹果树

 

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
 
 
题目描述 Description

在卡卡的房子外面,有一棵苹果树。每年的春天,树上总会结出很多的苹果。卡卡非常喜欢吃苹果,所以他一直都精心的呵护这棵苹果树。我们知道树是有很多分叉点的,苹果会长在枝条的分叉点上面,且不会有两个苹果结在一起。卡卡很想知道一个分叉点所代表的子树上所结的苹果的数目,以便研究苹果树哪些枝条的结果能力比较强。

卡卡所知道的是,每隔一些时间,某些分叉点上会结出一些苹果,但是卡卡所不知道的是,总会有一些调皮的小孩来树上摘走一些苹果。

于是我们定义两种操作:

C x

表示编号为x的分叉点的状态被改变(原来有苹果的话,就被摘掉,原来没有的话,就结出一个苹果)

G x

查询编号为x的分叉点所代表的子树中有多少个苹果

我们假定一开始的时候,树上全都是苹果,也包括作为根结点的分叉1。

输入描述 Input Description

第一行一个数N (n<=100000)

接下来n-1行,每行2个数u,v,表示分叉点u和分叉点v是直接相连的。

再接下来一行一个数M,(M<=100000)表示询问数

接下来M行,表示询问,询问的格式如题目所述Q x或者C x

输出描述 Output Description

对于每个Q x的询问,请输出相应的结果,每行输出一个

样例输入 Sample Input

3

1 2

1 3

3

Q 1

C 2

Q 1

样例输出 Sample Output

3

2

/*
    先dfs一遍,求出dfs序和每个点的子树大小 
    树就变成了一个数列,就可以用线段树维护苹果的数量了 
    list1[i]=j:节点i的dfs序为j 
    list2[i]=j:dfs序为i的节点为j 
    以x为根节点的子树的每一个节点的dfs序依次为list1[x]~list1[x]+sz[x]-1 
    如果x为节点的dfs序,则子树编号dfs序依次为x~x+sz[list2[x]]-1 
*/
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=100010;
int sz[maxn],num,head[maxn],n,list1[maxn],p,m,opx,list2[maxn];
struct node1{
    int pre,to;
}e[maxn];
struct node2{
    int l,r,v;
}tr[maxn<<4];
void Insert(int from,int to){
    e[++num].to=to;
    e[num].pre=head[from];
    head[from]=num;
}
void dfs(int now){
    sz[now]=1;list1[now]=++p;list2[p]=now;
    for(int i=head[now];i;i=e[i].pre){
        dfs(e[i].to);
        sz[now]+=sz[e[i].to];
    }
}
void build(int l,int r,int k){
    tr[k].l=l;tr[k].r=r;tr[k].v=1;
    if(l==r)return;
    int mid=(l+r)>>1;
    build(l,mid,k<<1);
    build(mid+1,r,k<<1|1);
    tr[k].v=tr[k<<1].v+tr[k<<1|1].v;
}
char ch[5];
void change(int k){
    if(tr[k].l==tr[k].r){
        tr[k].v=!tr[k].v;
        return;
    }
    int mid=(tr[k].l+tr[k].r)>>1;
    if(opx<=mid)change(k<<1);
    else change(k<<1|1);
    tr[k].v=tr[k<<1].v+tr[k<<1|1].v;
}
int Query(int l,int r,int k){
    if(tr[k].l==l&&tr[k].r==r)
        return tr[k].v;
    int mid=(tr[k].l+tr[k].r)>>1;
    if(r<=mid)return Query(l,r,k<<1);
    else if(l>mid)return Query(l,r,k<<1|1);
    else return Query(l,mid,k<<1)+Query(mid+1,r,k<<1|1);
}
int main(){
    scanf("%d",&n);
    int x,y;
    for(int i=1;i<n;i++){
        scanf("%d%d",&x,&y);
        Insert(x,y);
    }
    dfs(1);
    build(1,n,1);
    scanf("%d",&m);
    for(int i=1;i<=m;i++){
        scanf("%s%d",ch,&opx);
        opx=list1[opx];
        if(ch[0]==C)change(1);
        if(ch[0]==Q){
            printf("%d\n",Query(opx,opx+sz[list2[opx]]-1,1));
        }
    }
}

 

以上是关于Codevs 1228 苹果树的主要内容,如果未能解决你的问题,请参考以下文章

[Codevs] 1228 苹果树

AC日记——苹果树 codevs 1228

codevs 1228 苹果树 树链剖分讲解

codevs 1228 苹果树

codevs1228 苹果树

codevs1228 (dfs序+线段树)