蓝桥杯嵌入式组别第十一节:实时时钟RTC

Posted 兜兜里有好多糖

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了蓝桥杯嵌入式组别第十一节:实时时钟RTC相关的知识,希望对你有一定的参考价值。

实时时钟RTC

RTC简介

  1. 可以提供一个自动唤醒服务,让单片机从低功耗模式恢复到正常工作模式。
  2. RTC是一个独立BCD码(二进制编码的十进制数)的定时器和计数器。
  3. 可以提供时间,日期,年等信息
  4. 只要外部的供电电压还在供电范围,RTC就不会停止计数
  5. 数字校准精度高
  6. RTC的时钟源可以选择LSE或者HSI(都是外部晶振)
  7. RTC也可以选择内部的LSI32位慢速时钟源

程序设计

  1. 【模板】作为STM32CUBEMX生成代码的工程;
  2. 启用RTC的时钟、日历功能;
  3. 根据需求,配置RTC的时钟、初始化状态,并把输入到RTC模块的时钟配置成1Hz!
  4. 将rtc.c 和rtc.h移植到【编程工程】
    4.1main.c包含#include“rtc.h”
    4.2 stm32g4xx hal confh 中启动RTC模块
    4.3 时钟初始化,一定要初始化LSI作为RTC的时钟源
    4.4 调用HAL RTC GetTime和HAL RTC GetDate获取时间和日期!

找到timers下面的RTC,然后勾选前面两个选项,就会开启RTC的时钟源和计时功能:

然后我们可以看到时钟树中已经默认配置时钟源为LSI(32khz内部低速时钟),就保持默认即可。

下一步就是配置分频值和预分频值,使得RTC的频率为1HZ。

此处给出的默认的分频值和预分频值的分频是:
128*256=32768(分频是从0开始的,所以127其实分频是128),也就是如果RTC接的晶振频率是32768HZ,那么经过127的预分频和255的分频之后,RTC的频率就是1HZ。
但是我们现在接的时钟源是32KHZ,所以这个值是有问题的。所以我们应该改这两个值。
比如改成31和999就可以了。

然后下面的一些参数可以按照如下设置,便于我们观察现象:

之后就可生成代码,然后进行移植了。
最重要的要记住的一点就是RTC的移植还要带一步初始化LSI为RTC的时钟源:
就是用模板里面的main.c中的下面这段程序:

   /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
  PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;

  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  
    Error_Handler();
  

替换掉编程文件main.c中的下面这段:

    /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  
    Error_Handler();
  

然后编写RTC的启动程序:

RTC_TimeTypeDef rtc_time;
RTC_DateTypeDef rtc_date;
void RTC_Process(void)

	HAL_RTC_GetTime(&hrtc,&rtc_time,RTC_FORMAT_BIN);
	HAL_RTC_GetDate(&hrtc,&rtc_date,RTC_FORMAT_BIN);


完整的main.c如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "gpio.h"
#include "led.h"
#include "key.h"
#include "i2c.h"
#include "dac.h"
#include "rtc.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

//Led执行程序
__IO uint32_t ledTick =0,keyTick=0;
u8 led_ctrl=0xff;
void LED_Process(void)

	if(uwTick-ledTick<500)return;
	ledTick=uwTick;
	LED_Control(led_ctrl);
	led_ctrl=~led_ctrl;


//KEY
void KEY_Process(void)

	if(uwTick-keyTick<10)return;
	keyTick=uwTick;
	Key_Read();
//	if(Trg&0x01)
//	
//	LED_Control(0x01);
//	
	if(Trg)
	
		LED_Control(Trg);
	


//EEPROM
u8 val_24c02=0;

//DAC
u16 dac_ch1_val,dac_ch2_val;
void DAC_Process(void)

	  dac_ch1_val=(1.1f/3.3f*4095);//输出1.1V
	  dac_ch2_val=(2.1f/3.3f*4095);//输出2.2V
	
    HAL_DAC_SetValue(&hdac1,DAC_CHANNEL_1,DAC_ALIGN_12B_R,dac_ch1_val);//0->0V;4095->3.3V
		HAL_DAC_Start(&hdac1,DAC_CHANNEL_1);
	
	  HAL_DAC_SetValue(&hdac1,DAC_CHANNEL_2,DAC_ALIGN_12B_R,dac_ch2_val);//0->0V;4095->3.3V
		HAL_DAC_Start(&hdac1,DAC_CHANNEL_2);


//RTC
RTC_TimeTypeDef rtc_time;
RTC_DateTypeDef rtc_date;
void RTC_Process(void)

	HAL_RTC_GetTime(&hrtc,&rtc_time,RTC_FORMAT_BIN);
	HAL_RTC_GetDate(&hrtc,&rtc_date,RTC_FORMAT_BIN);


//LCD
void LCD_Process(void)

	u8 display_buf[20];
	
	sprintf((char*)display_buf,"%02d-%02d-%02d",rtc_time.Hours,rtc_time.Minutes,rtc_time.Seconds);
	LCD_DisplayStringLine(Line0,display_buf);
	
	sprintf((char*)display_buf,"%04d-%02d-%02d",rtc_date.Year,rtc_date.Month,rtc_date.Date);
	LCD_DisplayStringLine(Line1,display_buf);
	
	sprintf((char*)display_buf,"EEPROM:%d",val_24c02);
  LCD_DisplayStringLine(Line2,display_buf);//输出百分号:%
	


/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  /* USER CODE BEGIN 2 */
	
	LCD_Init();
	LED_Control(0x00);
	MX_DAC1_Init();
	MX_RTC_Init();
	I2CInit();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
	
	LCD_Clear(Blue);
	LCD_SetBackColor(Blue);
	LCD_SetTextColor(White);
	EEPROM_Write(0x10,0x55);
	val_24c02=EEPROM_Read(0x10);
	
  while (1)
  
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    LED_Process();
		KEY_Process();
		DAC_Process();
		RTC_Process();
		LCD_Process();
  
  /* USER CODE END 3 */


/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)

  RCC_OscInitTypeDef RCC_OscInitStruct = 0;
  RCC_ClkInitTypeDef RCC_ClkInitStruct = 0;
  RCC_PeriphCLKInitTypeDef PeriphClkInit = 0;
  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the CPU, AHB and APB busses clocks
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV2;
  RCC_OscInitStruct.PLL.PLLN = 20;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  
    Error_Handler();
  
  /** Initializes the CPU, AHB and APB busses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
  
    Error_Handler();
  
	
	 /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
  PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;

  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  
    Error_Handler();
  
	


/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)

  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */


#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)

  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\\r\\n", file, line) */
  /* USER CODE END 6 */

#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

蓝桥杯省赛C++组别大学B组历年题解

以上是关于蓝桥杯嵌入式组别第十一节:实时时钟RTC的主要内容,如果未能解决你的问题,请参考以下文章

蓝桥杯单片机第十一届国赛程序设计题--温度时钟国赛

蓝桥杯单片机第十一届国赛程序设计题--温度时钟国赛

蓝桥杯省赛C++组别大学B组历年题解

蓝桥杯省赛C++组别大学B组历年题解

蓝桥杯省赛C++组别大学B组历年题解

蓝桥杯嵌入式第十三届客观题解析