Structured Streaming系列-4集成 Kafka

Posted 技术武器库

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Structured Streaming系列-4集成 Kafka相关的知识,希望对你有一定的参考价值。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

传送门:大数据系列文章目录

官方网址http://spark.apache.org/http://spark.apache.org/sql/

目录

先来个kafka的介绍

Apache Kafka 是目前最流行的一个分布式的实时流消息系统,给下游订阅消费系统提供了并行处理和可靠容错机制,现在大公司在流式数据的处理场景, Kafka基本是标配。 StructuredStreaming很好的集成Kafka,可以从Kafka拉取消息,然后就可以把流数据看做一个DataFrame, 一张无限增长的大表,在这个大表上做查询, Structured Streaming保证了端到端的 exactly-once,用户只需要关心业务即可,不用费心去关心底层是怎么做的。

StructuredStreaming集成Kafka,官方文档如下:
http://spark.apache.org/docs/2.4.5/structured-streaming-kafka-integration.html

目前仅支持Kafka 0.10.+版本及以上,底层使用Kafka New Consumer API拉取数据,如果公司Kafka版本为0.8.0版本, StructuredStreaming集成Kafka参考文档:
https://github.com/jerryshao/spark-kafka-0-8-sql

StructuredStreaming既可以从Kafka读取数据,又可以向Kafka 写入数据,添加Maven依赖:

<!-- Structured Streaming + Kafka 依赖 -->
<dependency>
	<groupId>org.apache.spark</groupId>
	<artifactId>spark-sql-kafka-0-10_2.11</artifactId>
	<version>2.4.5</version>
</dependency>

kafka 数据消费

Kafka把生产者发送的数据放在不同的分区里面,这样就可以并行进行消费了。 每个分区里面的数据都是递增有序的,跟structured commit log类似,生产者和消费者使用Kafka 进行解耦,消费者不管你生产者发送的速率如何,只要按照一定的节奏进行消费就可以了。 每条消息在一个分区里面都有一个唯一的序列号offset(偏移量) , Kafka 会对内部存储的消息设置一个过期时间,如果过期了,就会标记删除,不管这条消息有没有被消费。

Kafka 可以被看成一个无限的流,里面的流数据是短暂存在的,如果不消费,消息就过期滚动没了。涉及一个问题:如果开始消费,就要定一下从什么位置开始。

  1. earliest:从最起始位置开始消费, 当然不一定是从0开始,因为如果数据过期就清掉了,所以可以理解为从现存的数据里最小位置开始消费;
  2. latest:从最末位置开始消费;
  3. per-partition assignment:对每个分区都指定一个offset,然后从offset位置开始消费;

当第一次开始消费一个Kafka 流的时候,上述策略任选其一,如果之前已经消费了,而且做了
checkpoint ,比如消费程序升级了,这时候就会从上次结束的位置开始继续消费。目前
StructuredStreaming和Flink框架从Kafka消费数据时,采用的就是上述的策略。

Kafka 数据源

Structured Streaming消费Kafka数据,采用的是poll方式拉取数据,与Spark Streaming中New
Consumer API集成方式一致。从Kafka Topics中读取消息,需要指定数据源(kafka)、 Kafka集群
的连接地址(kafka.bootstrap.servers)、消费的topic(subscribe或subscribePattern) , 指定topic
的时候,可以使用正则来指定,也可以指定一个 topic 的集合。

官方提供三种方式从Kafka topic中消费数据,主要区别在于每次消费Topic名称指定的不同

  • 方式一:消费一个Topic数据

  • 方式二:消费多个Topic数据

  • 方式三:消费通配符匹配Topic数据

从Kafka 获取数据后Schema字段信息如下,既包含数据信息有包含元数据信息:


在实际开发时,往往需要获取每条数据的消息,存储在value字段中,由于是binary类型,需要转换为字符串String类型;此外了方便数据操作,通常将获取的key和value的DataFrame转换为Dataset强类型,伪代码如下:


从Kafka数据源读取数据时,可以设置相关参数,包含必须参数和可选参数:

  • 必须参数: kafka.bootstrap.servers和subscribe,可以指定开始消费偏移量assign。

  • 可选参数:



范例演示: 从Kafka消费数据,进行词频统计, Topic为wordsTopic。

  • 第一步、创建Topic,相关命令如下:
# 启动Zookeeper
/export/server/zookeeper/bin/zkServer.sh start
# 启动Kafka Broker
/export/server/kafka/bin/kafka-server-start.sh -daemon /export/server/kafka/config/server.properties

## ================================= wordsTopic =================================
# 查看Topic信息
/export/server/kafka/bin/kafka-topics.sh --list --zookeeper 192.168.10.10:2181/kafka200
# 创建topic
/export/server/kafka/bin/kafka-topics.sh --create --zookeeper 192.168.10.10:2181/kafka200 --replicatio
n-factor 1 --partitions 3 --topic wordsTopic
# 模拟生产者
/export/server/kafka/bin/kafka-console-producer.sh --broker-list 192.168.10.10:9092 --topic wordsTopic
  • 第二步、编写代码,其中设置每批次消费数据最大量
package kafka.source

import org.apache.spark.sql.streaming.OutputMode, StreamingQuery
import org.apache.spark.sql.DataFrame, SparkSession

/**
 * @author lwh
 * @date 2022/10/10
 * @description
 **/
object StructuredKafkaSource 

  def main(args: Array[String]): Unit = 
    // 构建SparkSession实例对象
    val spark: SparkSession = SparkSession.builder()
      .appName(this.getClass.getSimpleName.stripSuffix("$"))
      .master("local[3]")
      // 设置Shuffle分区数目
      .config("spark.sql.shuffle.partitions", "3")
      .getOrCreate()
    
    // 导入隐式转换和函数库
    import spark.implicits._
    import org.apache.spark.sql.functions._
    
    // TODO: 从Kafka读取数据,底层采用New Consumer API
    val kafkaStreamDF: DataFrame = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "node01:9092")
      .option("subscribe", "wordsTopic")
      // TODO: 设置每批次消费数据最大值
      .option("maxOffsetsPerTrigger", "100000")
      .load()
    
    // TODO: 进行词频统计
    val resultStreamDF: DataFrame = kafkaStreamDF
      // 获取value字段的值,转换为String类型
      .selectExpr("CAST(value AS STRING)")
      // 转换为Dataset类型
      .as[String]
      // 过滤数据
      .filter(line => null != line && line.trim.length > 0)
      // 分割单词
      .flatMap(line => line.trim.split("\\\\s+"))
      // 按照单词分组,聚合
      .groupBy($"value").count()
    
    // 设置Streaming应用输出及启动
    val query: StreamingQuery = resultStreamDF.writeStream
      .outputMode(OutputMode.Complete())
      .format("console").option("numRows", "10").option("truncate", "false")
      .start()
    
    query.awaitTermination() // 查询器等待流式应用终止
    query.stop() // 等待所有任务运行完成才停止运行
  

kafka 接收器

往Kafka里面写数据类似读取数据, 可以在DataFrame上调用writeStream来写入Kafka,设置参数指定value,其中key是可选的,如果不指定就是null。如果key为null,有时候可能导致分区数据不均匀。

配置说明

将DataFrame写入Kafka时, Schema信息中所需的字段:

需要写入哪个topic,可以像上述所示在操作DataFrame 的时候在每条record上加一列topic字段指定, 也可以在DataStreamWriter上指定option配置。

写入数据至Kafka,需要设置Kafka Brokers地址信息及可选配置:

  • 必选参数: kafka.bootstrap.servers,使用逗号隔开【host:port】字符;
  • 可选参数: topic,如果DataFrame中没有topic列,此处指定topic表示写入Kafka Topic。

官方提供示例代码如下:

实时数据ETL架构

在实际实时流式项目中,无论使用Storm、 SparkStreaming、 Flink及Structured Streaming处理流式数据时,往往先从Kafka 消费原始的流式数据,经过ETL后将其存储到Kafka Topic中,以便其他业务相关应用消费数据,实时处理分析,技术架构流程图如下所示:


接下来模拟产生运营商基站数据,实时发送到Kafka 中,使用StructuredStreaming消费,经过ETL(获取通话状态为success数据)后,写入Kafka中,便于其他实时应用消费处理分析。

模拟基站日志数据

模拟产生运营商基站通话日志数据,封装到样例类中,字段信息如下:

package kafka.mock

/**
  * 基站通话日志数据,字段如下:
  *
  * @param stationId 基站标识符ID
  * @param callOut 主叫号码
  * @param callIn 被叫号码
  * @param callStatus 通话状态
  * @param callTime 通话时间
  * @param duration 通话时长
  */
case class StationLog(
                       stationId: String, //
                       callOut: String, //
                       callIn: String, //
                       callStatus: String, //
                       callTime: Long, //
                       duration: Long //
                     )
  override def toString: String = 
    s"$stationId,$callOut,$callIn,$callStatus,$callTime,$duration"
  

创建Topic,相关命令如下:

# 启动Zookeeper
/export/server/zookeeper/bin/zkServer.sh start
# 启动Kafka Broker
/export/server/kafka/bin/kafka-server-start.sh -daemon /export/server/kafka/config/server.properties

## ================================= stationTopic =================================
# 创建topic
/export/server/kafka/bin/kafka-topics.sh --create --zookeeper 192.168.10.10:2181/kafka200 --replicationfactor 1 --partitions 3 --topic stationTopic
# 模拟生产者
/export/server/kafka/bin/kafka-console-producer.sh --broker-list 192.168.10.10:9092 --topic stationTopic
# 模拟消费者
/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server 192.168.10.10:9092 --topic stationTopic --from-beginning

## ================================= etlTopic =================================
# 创建topic
/export/server/kafka/bin/kafka-topics.sh --create --zookeeper 192.168.10.10:2181/kafka200 --replicationfactor 1 --partitions 3 --topic etlTopic
# 模拟生产者
/export/servers/kafka/bin/kafka-console-producer.sh --broker-list 192.168.10.10:9092 --topic etlTopic
# 模拟消费者
/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server 192.168.10.10:9092 --topic etlTopic --from-beginning

编写代码,实时产生日志数据,发送Kafka Topic:

package kafka.mock

import java.util.Properties

import org.apache.kafka.clients.producer.KafkaProducer, ProducerRecord
import org.apache.kafka.common.serialization.StringSerializer

import scala.util.Random

/**
  * 模拟产生基站日志数据,实时发送Kafka Topic中,数据字段信息:
  *      基站标识符ID, 主叫号码, 被叫号码, 通话状态, 通话时间,通话时长
  */
object MockStationLog 

  def main(args: Array[String]): Unit = 
    // 发送Kafka Topic
    val props = new Properties()
    props.put("bootstrap.servers", "node01:9092")
    props.put("acks", "1")
    props.put("retries", "3")
    props.put("key.serializer", classOf[StringSerializer].getName)
    props.put("value.serializer", classOf[StringSerializer].getName)
    val producer = new KafkaProducer[String, String](props)

    val random = new Random()
    val allStatus =Array(
      "fail", "busy", "barring", "success", "success", "success",
      "success", "success", "success", "success", "success", "success"
    )

    while (true)
      val callOut: String = "1860000%04d".format(random.nextInt(10000))
      val callIn: String = "1890000%04d".format(random.nextInt(10000))
      val callStatus: String = allStatus(random.nextInt(allStatus.length))
      val callDuration = if("success".equals(callStatus)) (1 + random.nextInt(10)) * 1000L else 0L

      // 随机产生一条基站日志数据
      val stationLog: StationLog = StationLog(
        "station_" + random.nextInt(10), //
        callOut, //
        callIn, //
        callStatus, //
        System.currentTimeMillis(), //
        callDuration //
      )
      println(stationLog.toString)
      Thread.sleep(100 + random.nextInt(100))

      //生产写入Kafka
      val record = new ProducerRecord[String, String]("stationTopic", stationLog.toString)
      producer.send(record)
    

    producer.close() // 关闭连接
  


运行程序,基站通话日志数据格式如下:

station_7,18600009710,18900000269,success,1590709965144,4000
station_6,18600003894,18900000028,success,1590709965333,8000
station_7,18600007207,18900001057,busy,1590709965680,0

实时增量ETL

编写应用实时从Kafka的【stationTopic】消费数据,经过处理分析后,存储至Kafka的【etlTopic】,其中需要设置检查点目录,保证应用一次且仅一次的语义。

package kafka.sink

import org.apache.spark.sql.streaming.OutputMode
import org.apache.spark.sql.DataFrame, Dataset, SparkSession

/**
  * @ClassName StructKafkaSink
  * @Description TODO 使用结构化流生产数据到Kafka
  * @Create By     Frank
  */
object StructKafkaSink 
  def main(args: Array[String]): Unit = 
    //todo:1-构建SparkSession
    val spark = SparkSession
      .builder()
      .appName(this.getClass.getSimpleName.stripSuffix("$"))
      .master("local[2]")
      .config("spark.sql.shuffle.partitions",2)
      .getOrCreate()
    //修改日志级别
    spark.sparkContext.setLogLevel("WARN")
    //导包
    import spark.implicits._
    import org.apache.spark.sql.functions._

    //todo:2-处理数据
    //step1:读取数据
    val kafkaData = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "node01:9092,node02:9092,node03:9092")
      .option("subscribe", "stationTopic")
      .load()

    //step2:处理数据
    val rsData: Dataset[String] = kafkaData
      .selectExpr("CAST(value AS STRING)")  //取出value
      .as[String] //将Value的值转换为String类型
      .filter(line => line != null && line.trim.split(",").length == 6 && line.trim.split(",")(3) == "success")

    //step3:保存结果
    val query = rsData
      .writeStream
      .outputMode(OutputMode.Append())  //注意:ETL没有聚合,所以只能使用Append
      .format("kafka")
      .option("kafka.bootstrap.servers", "node01:9092,node02:9092,node03:9092")
      .option("topic", "etlTopic")   //要求:必须要有value这一列
      .option("checkpointLocation","datastruct/kafka/chk1")
      .start()


    //todo:3-启动并持久运行
    query.awaitTermination()
    query.stop()

  


Kafka 特定配置

从Kafka消费数据时,相关配置属性可以通过带有kafka.prefix的DataStreamReader.option进行设置,例如前面设置Kafka Brokers地址属性: stream.option(“kafka.bootstrap.servers”, “host:port”),更多关于Kafka 生产者Producer Config配置属和消费者Consumer Config配置属性,参考文档:

  • 生产者配置(Producer Configs):

http://kafka.apache.org/20/documentation.html#producerconfigs

  • 消费者配置(New Consumer Configs):

http://kafka.apache.org/20/documentation.html#newconsumerconfigs

注意以下Kafka参数属性可以不设置, 如果设置的话, Kafka source或者sink可能会抛出错误:

  1. group.id: Kafka source将会自动为每次查询创建唯一的分组ID;

  2. auto.offset.reset: 在将source选项startingOffsets设置为指定从哪里开始。 结构化流管理
    内部消费的偏移量,而不是依赖Kafka消费者来完成。这将确保在topic/partitons动态订阅时不
    会遗漏任何数据。注意, 只有在启动新的流式查询时才会应用startingOffsets,并且恢复操作
    始终会从查询停止的位置启动;

  3. key.deserializer/value.deserializer: Keys/Values总是被反序列化为ByteArrayDeserializer
    的字节数组,使用DataFrame操作显式反序列化keys/values;

  4. key.serializer/value.serializer: keys/values总是使用ByteArraySerializer或StringSerializer
    进行序列化,使用DataFrame操作将keysvalues/显示序列化为字符串或字节数组;

  5. enable.auto.commit: Kafka source不提交任何offset;

以上是关于Structured Streaming系列-4集成 Kafka的主要内容,如果未能解决你的问题,请参考以下文章

解释Spark Structured Streaming执行程序和Kafka分区之间的映射

Note_Spark_Day14:Structured Streaming

Spark Structured Streaming error读取字段'topic_metadata'时出错

Spark Structured Streaming框架之进程管理

python structured_streaming

structured streaming