为什么sklearn中的sklearn.metrics.RocCurveDisplay可视化的图像中的AUC值的有效小数位数为两位?而不能自定义调节(floating point precision)
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了为什么sklearn中的sklearn.metrics.RocCurveDisplay可视化的图像中的AUC值的有效小数位数为两位?而不能自定义调节(floating point precision)相关的知识,希望对你有一定的参考价值。
为什么sklearn中的sklearn.metrics.RocCurveDisplay可视化的图像中的AUC值的有效小数位数为两位?而不能自定义调节(floating point precision)
目录
为什么sklearn中的sklearn.metrics.RocCurveDisplay可视化的图像中的AUC值的有效小数位数为两位?而不能自定义调节(floating point precision)
问题:
我们需要使用sklearn.metrics.RocCurveDisplay的from_estimator可视化交叉验证的ROC曲线。
想自定义每一折的AUC值的小数位数。
import numpy as np
from sklearn import datasets
# Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape
# Add noisy features
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.metrics import auc
from sklearn.metrics import RocCurveDisplay
from sklearn.model_selection import StratifiedKFold
# Run classifier with cross-validation and plot ROC curves
cv = StratifiedKFold(n_splits=6)
classifier = svm.SVC(kernel="linear", probability=True, random_state=random_state)
tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)
fig, ax = plt.subplots()
for i, (train, test) in enumerate(cv.split(X, y)):
classifier.fit(X[train], y[train])
viz = RocCurveDisplay.from_estimator(
classifier,
X[test],
y[test],
name="ROC fold ".format(i),
alpha=0.3,
lw=1,
ax=ax,
)
interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
interp_tpr[0] = 0.0
tprs.append(interp_tpr)
aucs.append(viz.roc_auc)
ax.plot([0, 1], [0, 1], linestyle="--", lw=2, color="r", label="Chance", alpha=0.8)
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
ax.plot(
mean_fpr,
mean_tpr,
color="b",
label=r"Mean ROC (AUC = %0.2f $\\pm$ %0.2f)" % (mean_auc, std_auc),
lw=2,
alpha=0.8,
)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
ax.fill_between(
mean_fpr,
tprs_lower,
tprs_upper,
color="grey",
alpha=0.2,
label=r"$\\pm$ 1 std. dev.",
)
ax.set(
xlim=[-0.05, 1.05],
ylim=[-0.05, 1.05],
title="Receiver operating characteristic example",
)
ax.legend(loc="lower right")
plt.show()
剖析:
程序中是硬编码的,无能为力,如果需要其它位数需要说动编译或者自己写一个函数去处理。
根本就在于sklearn中的roc_curve函数底层使用了硬编码。
而sklearn.metrics.RocCurveDisplay的from_estimator可视化底层依赖的是roc_curve函数。
if self.roc_auc is not None and name is not None:
line_kwargs["label"] = f"name (AUC = self.roc_auc:0.2f)"
elif self.roc_auc is not None:
line_kwargs["label"] = f"AUC = self.roc_auc:0.2f"
elif name is not None:
line_kwargs["label"] = name
参考:Receiver Operating Characteristic (ROC) with cross validation — scikit-learn 1.1.2 documentation
参考:https://github.com/scikit-learn/scikit-learn/blob/7e1e6d09b/sklearn/metrics/_plot/roc_curve.py#L110
参考:sklearn.metrics.roc_curve — scikit-learn 1.1.2 documentation
参考:python - How to set floating point precision in Sklearn RocCurveDisplay? - Stack Overflow
以上是关于为什么sklearn中的sklearn.metrics.RocCurveDisplay可视化的图像中的AUC值的有效小数位数为两位?而不能自定义调节(floating point precision)的主要内容,如果未能解决你的问题,请参考以下文章
参数“mds”在pyLDAvis.sklearn.prepare()函数中的含义是什么?
为啥在 python 中获取 sklearn 中的***谓词的结果不同?
为啥我在 Sklearn 管道中的 OneHotEncoding 后得到的列比预期的多?