PyTorch笔记 - IMDB数据集文本分类项目模型与训练
Posted SpikeKing
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PyTorch笔记 - IMDB数据集文本分类项目模型与训练相关的知识,希望对你有一定的参考价值。
IMDB数据集:Kaggle下载地址,影评的积极或消极分类的影评
PyTorch的Dataset:torchtext.datasets.IMDB
# pip install torchdata torchtext
# 版本号需要与PyTorch对齐
from torchtext.datasets import IMDB
IMDB文本分类,自定义网络:
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import utils
import torchtext
from tqdm import tqdm
from torchtext.datasets import IMDB
from torchtext.datasets.imdb import NUM_LINES
from torchtext.data import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torchtext.data.functional import to_map_style_dataset
import os
import sys
import logging
import logging
logging.basicConfig(
level=logging.WARN, stream=sys.stdout, \\
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s")
VOCAB_SIZE = 15000
# step1 编写GCNN模型代码,门(Gate)卷积网络
class GCNN(nn.Module):
def __init__(self, vocab_size=VOCAB_SIZE, embedding_dim=64, num_class=2):
super(GCNN, self).__init__()
self.embedding_table = nn.Embedding(vocab_size, embedding_dim)
nn.init.xavier_uniform_(self.embedding_table.weight)
# 都是1维卷积
self.conv_A_1 = nn.Conv1d(embedding_dim, 64, 15, stride=7)
self.conv_B_1 = nn.Conv1d(embedding_dim, 64, 15, stride=7)
self.conv_A_2 = nn.Conv1d(64, 64, 15, stride=7)
self.conv_B_2 = nn.Conv1d(64, 64, 15, stride=7)
self.output_linear1 = nn.Linear(64, 128)
self.output_linear2 = nn.Linear(128, num_class)
def forward(self, word_index):
"""
定义GCN网络的算子操作流程,基于句子单词ID输入得到分类logits输出
"""
# 1. 通过word_index得到word_embedding
# word_index shape: [bs, max_seq_len]
word_embedding = self.embedding_table(word_index) # [bs, max_seq_len, embedding_dim]
# 2. 编写第一层1D门卷积模块,通道数在第2维
word_embedding = word_embedding.transpose(1, 2) # [bs, embedding_dim, max_seq_len]
A = self.conv_A_1(word_embedding)
B = self.conv_B_1(word_embedding)
H = A * torch.sigmoid(B) # [bs, 64, max_seq_len]
A = self.conv_A_2(H)
B = self.conv_B_2(H)
H = A * torch.sigmoid(B) # [bs, 64, max_seq_len]
# 3. 池化并经过全连接层
pool_output = torch.mean(H, dim=-1) # 平均池化,得到[bs, 4096]
linear1_output = self.output_linear1(pool_output)
# 最后一层需要设置为隐含层数目
logits = self.output_linear2(linear1_output) # [bs, 2]
return logits
# PyTorch官网的简单模型
class TextClassificationModel(nn.Module):
"""
简单版embedding.DNN模型
"""
def __init__(self, vocab_size=VOCAB_SIZE, embed_dim=64, num_class=2):
super(TextClassificationModel, self).__init__()
self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
self.fc = nn.Linear(embed_dim, num_class)
def forward(self, token_index):
# 词袋
embedded = self.embedding(token_index) # shape: [bs, embedding_dim]
return self.fc(embedded)
# step2 构建IMDB Dataloader
BATCH_SIZE = 64
def yeild_tokens(train_data_iter, tokenizer):
for i, sample in enumerate(train_data_iter):
label, comment = sample
yield tokenizer(comment) # 字符串转换为token索引的列表
train_data_iter = IMDB(root="./data", split="train") # Dataset类型的对象
tokenizer = get_tokenizer("basic_english")
# 只使用出现次数大约20的token
vocab = build_vocab_from_iterator(yeild_tokens(train_data_iter, tokenizer), min_freq=20, specials=["<unk>"])
vocab.set_default_index(0) # 特殊索引设置为0
print(f'单词表大小: len(vocab)')
# 校对函数, batch是dataset返回值,主要是处理batch一组数据
def collate_fn(batch):
"""
对DataLoader所生成的mini-batch进行后处理
"""
target = []
token_index = []
max_length = 0 # 最大的token长度
for i, (label, comment) in enumerate(batch):
tokens = tokenizer(comment)
token_index.append(vocab(tokens)) # 字符列表转换为索引列表
# 确定最大的句子长度
if len(tokens) > max_length:
max_length = len(tokens)
if label == "pos":
target.append(0)
else:
target.append(1)
token_index = [index + [0]*(max_length-len(index)) for index in token_index]
# one-hot接收长整形的数据,所以要转换为int64
return (torch.tensor(target).to(torch.int64), torch.tensor(token_index).to(torch.int32))
# step3 编写训练代码
def train(train_data_loader, eval_data_loader, model, optimizer, num_epoch, log_step_interval, save_step_interval, \\
eval_step_interval, save_path, resume=""):
"""
此处data_loader是map-style dataset
"""
start_epoch = 0
start_step = 0
if resume != "":
# 加载之前训练过的模型的参数文件
logging.warning(f"loading from resume")
checkpoint = torch.load(resume)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
start_step = checkpoint['step']
for epoch_index in tqdm(range(start_epoch, num_epoch), desc="epoch"):
ema_loss = 0
num_batches = len(train_data_loader)
for batch_index, (target, token_index) in enumerate(train_data_loader):
optimizer.zero_grad()
step = num_batches*(epoch_index) + batch_index + 1
logits = model(token_index)
# one-hot需要转换float32才可以训练
bce_loss = F.binary_cross_entropy(torch.sigmoid(logits), F.one_hot(target, num_classes=2).to(torch.float32))
ema_loss = 0.9 * ema_loss + 0.1 * bce_loss # 指数平均loss
bce_loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度的正则进行截断,保证训练稳定
optimizer.step() # 更新参数
if step % log_step_interval == 0:
logging.warning(f"epoch_index: epoch_index, batch_index: batch_index, ema_loss: ema_loss")
if step % save_step_interval == 0:
os.makedirs(save_path, exist_ok=True)
save_file = os.path.join(save_path, f"step_step.pt")
torch.save(
"epoch": epoch_index,
"step": step,
"model_state_dict": model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': bce_loss,
, save_file)
logging.warning(f"checkpoint has been saved in save_file")
if step % eval_step_interval == 0:
logging.warning("start to do evaluation...")
model.eval()
ema_eval_loss = 0
total_acc_account = 0
total_account = 0
for eval_batch_index, (eval_target, eval_token_index) in enumerate(eval_data_loader):
total_account += eval_target.shape[0]
eval_logits = model(eval_token_index)
total_acc_account += (torch.argmax(eval_logits, dim=-1) == eval_target).sum().item()
eval_bce_loss = F.binary_cross_entropy(torch.sigmoid(eval_logits), F.one_hot(eval_target, num_classes=2).to(torch.float32))
ema_eval_loss = 0.9 * ema_eval_loss + 0.1 * eval_bce_loss
logging.warning(f"ema_eval_loss: ema_eval_loss, eval_acc: total_acc_account / total_account")
model.train()
# model = GCNN()
model = TextClassificationModel()
print("模型总参数:", sum(p.numel() for p in model.parameters()))
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_data_iter = IMDB(root="data", split="train") # Dataset类型的对象
train_data_loader = torch.utils.data.DataLoader(
to_map_style_dataset(train_data_iter), batch_size=BATCH_SIZE, collate_fn=collate_fn, shuffle=True)
eval_data_iter = IMDB(root="data", split="test") # Dataset类型的对象
# collate校对
eval_data_loader = utils.data.DataLoader(
to_map_style_dataset(eval_data_iter), batch_size=8, collate_fn=collate_fn)
# resume = "./data/step_500.pt"
resume = ""
train(train_data_loader, eval_data_loader, model, optimizer, num_epoch=10, log_step_interval=20, \\
save_step_interval=500, eval_step_interval=300, save_path="./log_imdb_text_classification", resume=resume)
以上是关于PyTorch笔记 - IMDB数据集文本分类项目模型与训练的主要内容,如果未能解决你的问题,请参考以下文章
PyTorch笔记 - IMDB数据集文本分类项目模型与训练
Pytorch文本分类(imdb数据集),含DataLoader数据加载,最优模型保存
PT之Transformer:基于PyTorch框架利用Transformer算法针对IMDB数据集实现情感分类的应用案例代码解析