Hadoop简介和体系架构
Posted 全栈ing小甘
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop简介和体系架构相关的知识,希望对你有一定的参考价值。
目录
2.1 Hadoop简介
自从大数据的概念被提出后,出现了很多相关技术,其中对大数据发展最有影响力的就是开源分布式计算平台Hadoop,它就像软件发展史上的Window、Linux、Java一样,它的出现给接下来的大数据技术发展带来了巨大的影响。很多知名公司都加入Hadoop相关项目的开发中,如Facebook、Yahoo等,围绕大数据Hadoop技术产生了一系列大数据的相关技术
如 Spark、Hive、HCatalog、HBase、Zookeeper、Oozie、Pig和Sqoop等,这些项目组成 了大数据技术的开源生态圈,开源的Hadoop项目极大的促进了大数据技术在很多行业的应用发展
本章将详细介绍hadoop的由来和相关项目,最新的hadoop2.0的体系架构,以及在学习hadoop前,必须掌握的技术基础(Java语言和编程、关系型数据库、Linux操作系统等)
2.1.1 Hadoop由来
Hadoop起源于Google的三大论文:
GFS:Google的分布式文件系统Google File System
MapReduce:Google的MapReduce开源分布式并行计算框架
BigTable:一个大型的分布式数据库
演变关系
GFS—->HDFS
Google MapReduce—->Hadoop MapReduce
BigTable—->HBase
2.1.2 Hadoop发展历程
2.1.3 Hadoop生态系统
图中涉及的技术名词解释如下:
1、Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(mysql)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2、Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
3、Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:
(1)通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
(2)高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
(3)支持通过Kafka服务器和消费机集群来分区消息。
(4)支持Hadoop并行数据加载。
4、Storm:Storm用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
5、Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
6、Oozie:Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。
7、Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8、Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
10、R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
11、Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库。
12、ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、 分布式同步、组服务等。
ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
2.2 Hadoop的体系架构
2.2.1 分布式文件系统HDFS
HDFS 是一种分布式文件系统,为在商用硬件上运行而设计。HDFS具有高度容错能力,旨在部署在低成本的硬件上。HDFS提供对应用程序数据的高吞吐量访问,适用于具有大型数据集的应用程序
HDFS采用 Master/Slave 的架构来存储数据,该架构主要由4个部分组成
- Client:切片,用来与NameNode交互
- NameNOde节点
- DataNode节点
- SecondaryNameNode节点
2.2.2 分布式计算框架MapReduce
Hadoop MapReduce是一个软件框架,用于轻松编写应用程序,以可靠容错的方式在大型集群的商用硬件上并行处理大量数据。
MapReduce作业通常将输入数据集拆分为独立的块,这些块由Map任务以完全并行的方式处理。框架对地图的输出进行排序然后输入到Reduce任务中。
MapReduce将计算过程分为两个阶段:Map和Reduce
- Map阶段并行处理输入数据
- Reduce阶段对Map结果进行汇总
2.2.3 分布式资源调度系统YARN
从YARN的架构图来看,它主要由ResourceManager和ApplicationMaster、NodeManager、 ApplicationMaster和Container等组件组成
ResourceManager(RM)
YARN分层结构的本质是ResourceManager。这个实体控制整个集群并管理应用程序向基础计算资源的分配。
ResourceManager 将各个资源部分(计算、内存、带宽等)精心安排给基础NodeManager(YARN 的每节点代理)。ResourceManager还与 ApplicationMaster 一起分配资源,与NodeManager 一起启动和监视它们的基础应用程序。在此上下文中,ApplicationMaster 承担了以前的 TaskTracker 的一些角色,ResourceManager 承担了 JobTracker 的角色。
- 处理客户端请求;
- 启动或监控ApplicationMaster;
- 监控NodeManager;
- 资源的分配与调度。
NodeManager(NM)
NodeManager管理一个YARN集群中的每个节点。NodeManager提供针对集群中每个节点的服务,从监督对一个容器的终生管理到监视资源和跟踪节点健康。MRv1通过插槽管理Map和Reduce任务的执行,而NodeManager 管理抽象容器,这些容器代表着可供一个特定应用程序使用的针对每个节点的资源。YARN继续使用HDFS层。它的主要 NameNode用于元数据服务,而DataNode用于分散在一个集群中的复制存储服务。
- 单个节点上的资源管理;
- 处理来自ResourceManager上的命令;
- 处理来自ApplicationMaster上的命令。
ApplicationMaster(AM) ApplicationMaster管理一个在YARN内运行的应用程序的每个实例。ApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器的执行和资源使用(CPU、内存等的资源 分配)。请注意,尽管目前的资源更加传统(CPU 核心、内存),但未来会带来基于手头任务的新资源 类型(比如图形处理单元或专用处理设备)。从 YARN 角度讲,ApplicationMaster 是用户代码,因此 存在潜在的安全问题。YARN 假设 ApplicationMaster 存在错误或者甚至是恶意的,因此将它们当作无特权的代码对待。
- 负责数据的切分;
- 为应用程序申请资源并分配给内部的任务;
- 任务的监控与容错
Container
对任务运行环境进行抽象,封装CPU、内存等多维度的资源以及环境变量、启动命令等任务运行相关的信息。比如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。
2. 2. 4 三大发行版本
Hadoop三大发行版本:Apache、Cloudera、Hortonworks。
Apache版本:最原始(最基础)的版本,对于入门学习最好。
Cloudera:在大型互联网企业中用的较多。
Hortonworks:文档较好。
1. Apache Hadoop
官网地址:http://hadoop.apache.org/releases.html
下载地址:https://archive.apache.org/dist/hadoop/common/
2. Cloudera Hadoop
官网地址:https://www.cloudera.com/downloads/cdh/5-10-0.html
下载地址:http://archive-primary.cloudera.com/cdh5/cdh/5/
(1)2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,
Cloudera Manager,Cloudera Support
(3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强。
(4)Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop集群,并对集群的节点及服务进行实时监控。Cloudera Support即是对Hadoop的技术支持。
(5)Cloudera的标价为每年每个节点4000美元。Cloudera开发并贡献了可实时处理大数据的Impala 项目。
3. Hortonworks Hadoop
官网地址:https://hortonworks.com/products/data-center/hdp/
下载地址:Cloudera Enterprise Downloads
(1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。
(2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码。
(3)雅虎工程副总裁、雅虎Hadoop开发团队负责人Eric Baldeschwieler出任Hortonworks的首席执行官。
(4)Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。
(5)HCatalog,一个元数据管理系统,HCatalog现已集成到Facebook开源的Hive中。Hortonworks 的Stinger开创性的极大的优化了Hive项目。Hortonworks为入门提供了一个非常好的,易于使用的沙盒。
(6)Hortonworks开发了很多增强特性并提交至核心主干,这使得Apache Hadoop能够在包括Window Server和Windows Azure在内的Microsoft Windows平台上本地运行。定价以集群为基础,每10个节点每年为12500美元。目前,HDP已被CDH收购。
Hadoop学习笔记:概念和整体架构
- Hadoop简介和历史
- Hadoop架构体系
- Master和Slave节点
- 数据分析面临的问题和Hadoop思想
由于工作原因,必须学习和深入一下Hadoop,特此记录笔记。
什么是hadoop?
Apache Hadoop是一款支持数据密集型分布式应用并以Apache 2.0许可协议发布的开源软件框架。它支持在商品硬件构建的大型集群上运行的应用程序。Hadoop是根据Google公司发表的MapReduce和Google档案系统的论文自行实作而成。
Hadoop框架透明地为应用提供可靠性和数据移动。它实现了名为MapReduce的编程范式:应用程序被分割成许多小部分,而每个部分都能在集群中的任意节点上执行或重新执行。此外,Hadoop还提供了分布式文件系统,用以存储所有计算节点的数据,这为整个集群带来了非常高的带宽。MapReduce和分布式文件系统的设计,使得整个框架能够自动处理节点故障。它使应用程序与成千上万的独立计算的电脑和PB级的数据。
hadoop历史
Hadoop由 Apache Software Foundation 于 2005 年秋天作为Lucene的子项目Nutch的一部分正式引入。它受到最先由 Google Lab 开发的 Map/Reduce 和 Google File System(GFS) 的启发。
2006 年 3 月份,Map/Reduce 和 Nutch Distributed File System (NDFS) 分别被纳入称为 Hadoop 的项目中。Hadoop 是最受欢迎的在 Internet 上对搜索关键字进行内容分类的工具,但它也可以解决许多要求极大伸缩性的问题。例如,如果您要 grep 一个 10TB 的巨型文件,会出现什么情况?在传统的系统上,这将需要很长的时间。但是 Hadoop 在设计时就考虑到这些问题,采用并行执行机制,因此能大大提高效率。
- Hadoop Common:在0.20及以前的版本中,包含HDFS、MapReduce和其他项目公共内容,从0.21开始HDFS和MapReduce被分离为独立的子项目,其余内容为Hadoop Common
- HDFS:Hadoop分布式文件系统(Distributed File System)-HDFS(Hadoop Distributed File System)
- MapReduce:并行计算框架,0.20前使用org.apache.hadoop.mapred旧接口,0.20版本开始引入org.apache.hadoop.mapreduce的新API
- Apache HBase:分布式NoSQL列数据库,类似谷歌公司BigTable。
- Apache Hive:构建于hadoop之上的数据仓库,通过一种类SQL语言HiveQL为用户提供数据的归纳、查询和分析等功能。Hive最初由Facebook贡献。
- Apache Mahout:机器学习算法软件包。
- Apache Sqoop:结构化数据(如关系数据库)与Apache Hadoop之间的数据转换工具。
- Apache ZooKeeper:分布式锁设施,提供类似Google Chubby的功能,由Facebook贡献。
- Apache Avro:新的数据序列化格式与传输工具,将逐步取代Hadoop原有的IPC机制。
hadoop平台子项目
现在普遍认为整个Apache Hadoop“平台”包括Hadoop内核、MapReduce、Hadoop分布式文件系统(HDFS)以及一些相关项目,有Apache Hive和Apache HBase等等。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。
如图,最下面一层就是hadoop的核心代码,核心代码之上实现了两个最核心的功能:MapReduce和HDFS,这是hadoop的两大支柱!因为hadoop是Java写的,为了方便其他对Java语言不熟悉的程序员,在这之上又有Pig,这是一个轻量级的语言,用户可以使用Pig用于数据分析和处理,系统会自动把它转化为MapReduce程序。
还有一个Hive,很重要!这是一个传统的SQL到MapReduce的映射器,面向传统的数据库工程师。但是不支持全部SQL。还有一个子项目叫HBase,一个非关系数据库,NoSQL数据库,数据是列存储的,提高响应速度,减少IO量,可以做成分布式集群。
ZooKeeper负责服务器节点和进程间的通信,是一个协调工具,因为Hadoop的几乎每个子项目都是用动物做logo,故这个协调软件叫动物园管理员。
Hadoop架构
如图,两个服务器机柜,每个圆柱代表一个物理机,各个物理节点通过网线连接,连接到交换机,然后客户端通过互联网来访问。其中各个物理机上都运行着Hadoop的一些后台进程。
Namenode
也叫名称节点,是HDFS的守护程序(一个核心程序),对整个分布式文件系统进行总控制,会纪录所有的元数据分布存储的状态信息,比如文件是如何分割成数据块的,以及这些数据块被存储到哪些节点上,还有对内存和I/O进行集中管理,用户首先会访问Namenode,通过该总控节点获取文件分布的状态信息,找到文件分布到了哪些数据节点,然后在和这些节点打交道,把文件拿到。故这是一个核心节点。
不过这是个单点,发生故障将使集群崩溃。
Secondary Namenode
在Hadoop中,有一些命名不好的模块,Secondary NameNode是其中之一。从它的名字上看,它给人的感觉就像是NameNode的备份,比如有人叫它第二名称节点,仿佛给人感觉还有后续……但它实际上却不完全是。
最好翻译为辅助名称节点,或者检查点节点,它是监控HDFS状态的辅助后台程序,可以保存名称节点的副本,故每个集群都有一个,它与NameNode进行通讯,定期保存HDFS元数据快照。NameNode故障可以作为备用NameNode使用,目前还不能自动切换。但是功能绝不仅限于此。所谓后备也不是它的主要功能。后续详细解释。
DataNode
叫数据节点,每台从服务器节点都运行一个,负责把HDFS数据块读、写到本地文件系统。这三个东西组成了Hadoop平台其中一个支柱——HDFS体系。
再看另一个支柱——MapReduce,有两个后台进程。
JobTracker
叫作业跟踪器,运行到主节点(Namenode)上的一个很重要的进程,是MapReduce体系的调度器。用于处理作业(用户提交的代码)的后台程序,决定有哪些文件参与作业的处理,然后把作业切割成为一个个的小task,并把它们分配到所需要的数据所在的子节点。
Hadoop的原则就是就近运行,数据和程序要在同一个物理节点里,数据在哪里,程序就跑去哪里运行。这个工作是JobTracker做的,监控task,还会重启失败的task(于不同的节点),每个集群只有唯一一个JobTracker,类似单点的nn,位于Master节点(稍后解释Master节点和slave节点)。
TaskTracker
叫任务跟踪器,MapReduce体系的最后一个后台进程,位于每个slave节点上,与datanode结合(代码与数据一起的原则),管理各自节点上的task(由jobtracker分配),每个节点只有一个tasktracker,但一个tasktracker可以启动多个JVM,用于并行执行map或reduce任务,它与jobtracker交互通信,可以告知jobtracker子任务完成情况。
Master与Slave
Master节点:运行了Namenode、或者Secondary Namenode、或者Jobtracker的节点。还有浏览器(用于观看管理界面),等其它Hadoop工具。Master不是唯一的!
Slave节点:运行Tasktracker、Datanode的机器。
数据分析者面临的问题和Hadoop的思想
目前需要我们处理的数据日趋庞大,无论是入库和查询,都出现性能瓶颈,用户的应用和分析结果呈整合趋势,对实时性和响应时间要求越来越高。使用的模型越来越复杂,计算量指数级上升。
故,人们希望出现一种技术或者工具来解决性能瓶颈,在可见未来不容易出现新瓶颈,并且学习成本尽量低,使得过去所拥有的技能可以平稳过渡。比如SQL、R等,还有转移平台的成本能否控制最低,比如平台软硬件成本,再开发成本,技能再培养成本,维护成本等。
而Hadoop就能解决如上问题——分而治之,化繁为简。
欢迎关注
dashuai的博客是终身学习践行者,大厂程序员,且专注于工作经验、学习笔记的分享和日常吐槽,包括但不限于互联网行业,附带分享一些PDF电子书,资料,帮忙内推,欢迎拍砖!
以上是关于Hadoop简介和体系架构的主要内容,如果未能解决你的问题,请参考以下文章