DDD领域驱动设计实战-分层架构及代码目录结构

Posted m0_69377236

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了DDD领域驱动设计实战-分层架构及代码目录结构相关的知识,希望对你有一定的参考价值。

[](()1.1 分层架构的基本原则


每层只与位于其下方的层发生耦合。

[](()1.2 分层架构的分类


  • 严格分层架构(Strict Layers Architecture)

某层只能与其直接下层耦合,即我的奴隶的奴隶,不是我的奴隶。

  • 松散分层架构(Relaxed Layers Architecture)

允许任意上层与任意下层耦合。由于用户接口层和应用服务通常需要与基础设施打交道,许多系统都是该架构。

较低层有时也可与较高层耦合,但只限于采用观察者 (Observer)模式或者调停者(Mediator)模式场景。

较低层绝不能直接访问较高层。例如,在使用调停者模式时,较高层可能实现了较低 Java开源项目【ali1024.coding.net/public/P7/Java/git】 层的接口,然后将实现对象作为参数传递到较低层。当较低层调用该实现时, 它并不知道实现出自何处。

[](()1.3 分层架构演进


[](()1.3.1 传统四层架构

将领域模型和业务逻辑分离出来,并减少对基础设施、用户界面甚至应用层逻辑的依赖,因为它们不属业务逻辑。将一个夏杂的系统分为不同的层,每层都应该具有良好的内聚性,并且只依赖于比其自身更低的层。

传统分层架构的基础设施层位于底层,持久化和消息机制便位于该层。

这里的消息包含

  • MQ消息

  • SMTP

  • 文本消息(SMS)

可将基础设施层中所有组件看作应用程序的低层服务,较高层与该层发生耦合以复用技术基础设施。即便如此,依然应避免核心的领域模型对象与基础设施层直接耦合

[](()1.3.2 改良版四层架构

[](()传统架构的缺陷

DDD初创开发团队发现,将基础设施层放在最底层存在缺点,比如此时领域层中的一些技术实现就很困难:

  • 违背分层架构的基本原则

  • 难以编写测试用例

何解?

使用依赖反转设计原则:低层服务(如基础设施层)应依赖高层组件(比如用户界面层、应用层和领域层)所提供的接口。

[](()应用依赖反转原则

  • 依赖反转原则后的分层方式:基础设施层在最上方,可实现所有其他层中定义的接口

依赖反转原则真的可以支持所有层吗? 《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》开源

有人认为依赖反转原则中只存在两层:最上方和最下方,上层实现下层定义的抽象接口。因此上图的基础设施层将位于最上方,而用户接口层、应用层和领域层应作同层且都位于下方。对此大家可保留自己意见。

[](()2 各层职责

=====================================================================

[](()2.1 Interfaces(用户接口层)


一般包括用户接口、Web 服务等。

只处理用户显示和用户请求,不应包含领域或业务逻辑。

有人认为,既然用户接口需验证用户输入,就无可避免应该包含业务逻辑。事实上,用户接口所进行的验证和对领域模型的验证不同:对那些粗制滥造且只面向领域模型的验证行为,应该予以限制。

如果用户接口使用了领域模型中的对象,那么此时领域对象仅限于数据渲染展现。在采用这种方式时,可使用展现模型对用户接口与领域对象进行解耦。

由于用户可能是人,也可能是其他系统,有时用户接口层将采用开放主机服务的方式向外提供API。

用户接口层是应用层的直接用户。

用户接口层在于前后端调用的适配。若你的微服务要提供服务给很多外部应用,而对每个外部应用的入参出参都不同,你不可能开发一堆一对一的应用服务,这时Facade接口就起到了很好的作用,包括DO和DTO对象的组装和转换。

由于主要负责接入各种终端,所以该层有人也叫接入层。

实际开发中,我们都会感受到该层依附于应用层存在。随前后端分离,Restful API 流行,对简单的系统来说该层越来越弱化。对于有终端接入的系统来说,该层并不简单,需要处理各种协议适配:XMPP、websocket、MQTT 等。

复杂度不高时,我们往往把该层和应用层合并部署,主要凭开发经验和理解程度来决定。

存放用户接口层与前端交互、展现数据相关的代码。

前端应用通过这层接口,向应用服务获取展现所需的数据。

该层主要用来处理用户发送的Restful请求,解析用户输入的配置文件,并将数据传递给应用层。

数据的组装、数据传输格式以及Facade接口等代码都会放在这一层目录里。

封装应用服务和对外暴露接口。

[](()特点

  • 关心视图和对外的服务,Restful、页面渲染、websocket、XMPP 连接等

  • 如果没有多种用户端接入方式,可以和应用层合并

  • 对应到分布式系统中的网关、BFF、前台等概念

  • 只产生接入异常,例如数据校验,对应 HTTP 状态码 400、415 等

  • 一个应用可以有多个接入层

  • 接入层做和业务规则无关的 bean validation 验证

  • 准单体系统下,按照连接方式分包

该层指的是服务端用于适配端侧的部分,而非端侧本身。因为该层本就依赖应用层,无人使用接口在这里做依赖倒置,所有又被称作主动适配。

[](()1.1 细分结构


  • assembler、dto 和 façade

[](()facade

提供较粗粒度的调用接口,将用户请求委派给一个或多个应用服务进行处理。比如调用应用层创建用户的方法。

[](()dto

数据传输的载体,内部不存在任何业务逻辑,可以通过DTO把内部的领域对象与外界隔离。

比如接收请求传入的数据CustomerDTO。

不同的对象在不同的层转换。用户接口层DTO和DO转换,应用层主要是DO,调外部微服务的服务的时候应用层有dto和do的转换。领域层与基础层之间,在基础层有DO和PO的转换。

在接口层定义DTO对象。数据可能来源于多个DO对象。

[](()assembler

实现DTO与DO间的相互转换和数据交换。

一般assembler与dto一同出现。比如创建用户时,将CustomerDTO转换为CustomerEntity。你可以在用户接口层创建DTO类和assembler类。在assembler类里完成映射。

[](()2.2 应用层


[](()特点

  • 关心处理完一个完整的业务

  • 该层只负责业务编排,对象转换,实际业务逻辑由领域层完成

  • 不关心【请求从何处来】,但是关心【谁来、做什么、有没有权限做】

即复制安全认证、权限校验

  • 集成不同的领域服务解决问题

应用层位于领域层之上,因为领域层包含多个聚合,所以它可协调多个聚合服务和领域对象完成服务编排和组合,协作完成业务。

  • 最终一致性(最终一致性对业务有侵入)事务放到这层

  • 对应到分布式系统中的中台等概念

  • 方法级别的功能权限控制放到这层

  • 只产应用异常,对应 HTTP 状态码 403、401

  • 准单体系统下,按照应用划分模块

主要包含应用服务,理论上不应有业务规则或逻辑,而主要是面向用例和流程相关的操作。

  • 应用层也是微服务间的交互通道,它可调用其它微服务,完成微服务间的服务组合和编排

开发设计时,不要将本该放在领域层的业务逻辑放到应用层。庞大的应用层会使领域模型失焦,时间一长,微服务就会退化为MVC

应用服务是在应用层,负责

  • 服务的组合、编排、转发、转换和传递,处理业务用例的执行顺序以及结果的拼装,以粗粒度服务通过API网关发布到前端

  • 发送或订阅领域事件

[](()应用层代码目录结构

存放应用层服务组合和编排相关的代码。

应用服务向下基于

  • 微服务内的领域服务,或

  • 外部微服务的应用服务

完成服务的编排和组合

向上为用户接口层提供各种应用数据展现支持服务。

应用服务和事件等代码会放在这层目录。

[](()Event(事件)

主要存放事件相关代码。包括两子目录:

[](()publish

主要存放事件发布相关代码。比如发布用户创建事件给其它微服务。

[](()subscribe

主要存放事件订阅相关代码(事件处理相关的核心业务逻辑在领域层实现)。

虽然应用层和领域层都可进行事件的发布和处理,但为实现事件的统一管理,推荐将微服务内所有事件的发布和订阅处理都统一放到应用层,事件相关的核心业务逻辑实现放在领域层。通过应用层调用领域层服务,来实现完整的事件发布和订阅处理流程。

[](()Service(应用服务)

应用服务会对多个领域服务或外部应用服务进行封装、编排和组合,对外提供粗粒度的服务。应用服务主要实现服务组合和编排,是一段独立的业务逻辑。

可以将所有应用服务放在一个应用服务类里,也可以把一个应用服务设计为一个应用服务类,以防应用服务类代码量过大。

比如内部服务->创建用户;外部服务->创建日志。

[](()2.3 领域层


主要包含聚合根、实体、值对象、领域服务等领域模型中的领域对象。

实现核心业务逻辑,通过各种校验保证业务正确性。领域层主要体现领域模型的业务能力,它用来表达业务概念、业务状态和业务规则。

领域模型的业务逻辑主要由实体和领域服务实现:

  • 实体采用充血模型 实现所有与之相关的业务功能。

实体和领域服务在实现业务逻辑上不是同级,当领域中的某些功能,单一实体或值对象无法实现,就会用到领域服务,它可组合聚合内的多个实体或值对象,实现复杂业务逻辑。

[](()3 Domain(领域层)

最后

每年转战互联网行业的人很多,说白了也是冲着高薪去的,不管你是即将步入这个行业还是想转行,学习是必不可少的。作为一个Java开发,学习成了日常生活的一部分,不学习你就会被这个行业淘汰,这也是这个行业残酷的现实。

如果你对Java感兴趣,想要转行改变自己,那就要趁着机遇行动起来。或许,这份限量版的Java零基础宝典能够对你有所帮助。

领域模型的业务逻辑主要由实体和领域服务实现:

  • 实体采用充血模型 实现所有与之相关的业务功能。

实体和领域服务在实现业务逻辑上不是同级,当领域中的某些功能,单一实体或值对象无法实现,就会用到领域服务,它可组合聚合内的多个实体或值对象,实现复杂业务逻辑。

[](()3 Domain(领域层)

最后

每年转战互联网行业的人很多,说白了也是冲着高薪去的,不管你是即将步入这个行业还是想转行,学习是必不可少的。作为一个Java开发,学习成了日常生活的一部分,不学习你就会被这个行业淘汰,这也是这个行业残酷的现实。

如果你对Java感兴趣,想要转行改变自己,那就要趁着机遇行动起来。或许,这份限量版的Java零基础宝典能够对你有所帮助。

[外链图片转存中…(img-r1FcPa9a-1650169995978)]

DDD 领域驱动设计实战(分层架构)

????????关注后回复 “进群” ,拉你进程序员交流群????????

作者丨JavaEdge在掘金

来源:

https://juejin.cn/post/6920458240165675022

  • 1 DDD分层架构

    • 1.1 分层架构的基本原则

    • 1.2 分层架构的分类

    • 1.3 分层架构演进

  • 2 各层职责

    • 2.1 用户接口层

    • 2.2 应用层

    • 2.3 领域层

    • 2.4 基础层

  • 3 微服务架构演进

    • 微服务架构的演进案例

    • 微服务内服务的演进

    • 三层架构如何演进到DDD分层架构?

  • 总结


整洁架构、CQRS、六边形架构等微服务架构都旨在“高内聚低耦合”。那DDD分层架构又如何?

1 DDD分层架构

1.1 分层架构的基本原则

每层只能与位于其下方的层发生耦合。

1.2 分层架构的分类

  • 严格分层架构(Strict Layers Architecture)

某层只能与其直接下层耦合,即我的奴隶的奴隶,不是我的奴隶。

  • 松散分层架构(Relaxed Layers Architecture)

允许任意上层与任意下层耦合。由于用户接口层和应用服务通常需要与基础设施打交道,许多系统都是该架构。

较低层有时也可与较高层耦合,但只限于采用观察者 (Observer)模式或者调停者(Mediator)模式场景。较低层 绝不能直接访问 较高层。例如,在使用调停者模式时,较高层可能实现了较低层的接口,然后将实现对象作为参数传递到较低层。当较低层调用该实现时, 它并不知道实现出自何处。

1.3 分层架构演进

1.3.1 传统四层架构

图片

将领域模型和业务逻辑分离出来,并减少对基础设施、用户界面甚至应用层逻辑的依赖,因为它们不属业务逻辑。将一个夏杂的系统分为不同的层,每层都应该具有良好的内聚性,并且只依赖于比其自身更低的层。

传统分层架构的 基础设施层 位于底层,持久化和消息机制便位于该层。这里的消息包含MQ消息、SMTP或文本消息(SMS)。可将基础设施层中所有组件看作应用程序的低层服务,较高层与该层发生耦合以复用技术基础设施。即便如此,依然应避免核心的领域模型对象与基础设施层直接耦合。

1.3.2 改良版四层架构

传统架构的缺陷

DDD初创开发团队发现,将基础设施层放在最底层存在缺点。比如此时领域层中的一些技术实现令人头疼:

  • 违背分层架构的基本原则

  • 难以编写测试用例

何解?

使用 依赖反转设计原则 :低层服务(如基础设施层)应依赖高层组件(比如用户界面层、应用层和领域层)所提供接口。

应用依赖反转原则
  • 依赖反转原则后的分层方式:基础设施层在最上方,可实现所有其他层中定义的接口

图片
依赖反转原则真的可以支持所有层吗?

有人认为依赖反转原则中只存在两层:最上方和最下方,上层实现下层定义的抽象接口。因此上图的基础设施层将位于最上方,而用户接口层、应用层和领域层应作 同层且都位于下方 。对此大家可保留自己意见。在六边形[Cockburn]或端口和适配器架构中对此做详细讲解。

2 各层职责

2.1 用户接口层

一般包括用户接口、Web 服务等。

只处理用户显示和用户请求,不应包含领域或业务逻辑。有人可能认为,既然用户接口需验证用户输入,那就应该包含业务逻辑。事实上,用户接口所进行的验证和对领域模型的验证不同:对那些粗制滥造且只面向领域模型的验证行为,应该予以限制。

如果用户接口使用了领域模型中的对象,那么此时领域对象仅限于数据渲染展现。在采用这种方式时,可使用展现模型对用户接口与领域对象进行解耦。由于用户可能是人,也可能是其他系统,有时用户接口层将采用开放主机服务的方式向外提供API。用户接口层是应用层的直接用户。

用户接口层很重要,在于前后端调用的适配。若你的微服务要面向很多应用或渠道提供服务,而每个渠道的入参出参都不一样,你不太可能开发出太多应用服务,这样Facade接口就起很好的作用了,包括DO和DTO对象的组装和转换等。

2.2 应用层

主要包含应用服务,理论上不应有业务规则或逻辑,而主要是面向用例和流程相关的操作。

  • 应用层位于领域层之上,因为领域层包含多个聚合,所以它可协调 多个聚合服务和领域对象完成服务编排和组合 ,协作完成业务。

  • 应用层也是微服务间的交互通道,它可调用其它微服务,完成 微服务间的服务组合和编排 。

开发设计时,不要将本该放在领域层的业务逻辑放到应用层。因为庞大的应用层会使领域模型失焦,时间一长微服务就会演化为传统MVC三层架构,导致业务逻辑混乱。

应用服务是在应用层,负责服务的组合、编排、转发、转换和传递,处理业务用例的执行顺序以及结果的拼装,以粗粒度服务通过API网关发布到前端。还可进行安全认证、权限校验、事务控制、发送或订阅领域事件等。

2.3 领域层

主要包含聚合根、实体、值对象、领域服务等领域模型中的领域对象。

实现核心业务逻辑,通过各种校验保证业务正确性。领域层主要体现领域模型的业务能力,它用来表达业务概念、业务状态和业务规则。

领域模型的业务逻辑主要由实体和领域服务实现:

  • 实体采用充血模型 实现所有与之相关的业务功能。

实体和领域服务在实现业务逻辑上不是同级,当领域中的某些功能,单一实体或值对象无法实现,就会用到领域服务,它可组合聚合内的多个实体或值对象,实现复杂业务逻辑。

2.4 基础层

为其它各层提供通用的技术基础服务,包含三方工具、驱动、MQ、API网关、文件、缓存、DB、基础服务等。最常用的还是提供DB持久化。

基础层包含基础服务,它采用依赖反转,封装基础资源服务,实现应用层、领域层与基础层解耦。

传统架构由于上层应用对DB强耦合,很多公司在架构演进最怕换DB,一旦更换,可能需重写一堆代码。但采用依赖反转,应用层即可通过解耦保持独立核心业务逻辑。当DB变更,只需更换DB基础服务。

3 微服务架构演进

领域模型中对象的层次从内到外依次是:值对象、实体、聚合和限界上下文。

实体或值对象的简单变更,一般不会让领域模型和微服务发生大变。但聚合的重组或拆分却可以。因为聚合内业务功能内聚,能独立完成特定业务。那聚合的重组或拆分,势必引起业务模块和系统功能变化。

可以聚合为基础单元,完成领域模型和微服务架构的演进。聚合可作为整体,在不同领域模型间重组或拆分,或直接将一个聚合独立为微服务。

微服务架构的演进案例

现有 微服务 1:包含聚合 a、b、c 微服务2:微服务3:包含聚合 d、e、f

  • 当发现微服务1中聚合a的功能经常被高频访问,以致拖累了整个微服务1的性能,可把聚合a,从微服务1中剥离,独立为微服务2以应对高性能场景

  • 随业务发展,发现微服务3的领域模型变化,聚合d会更适合放到微服务1的领域模型。即可将聚合d整体迁移到微服务1。注意定义好聚合间的代码边界

  • 架构演进后,微服务1从最初包含聚合a、b、c,演进为包含聚合b、c、d的新领域模型和微服务

可见,好的聚合和代码模型的边界设计,可让你快速应对业务变化,轻松实现领域模型和微服务架构演进。

微服务内服务的演进

在微服务内部,实体的方法被领域服务组合和封装,领域服务又被应用服务组合和封装。在服务逐层组合和封装的过程中,你会发现这样一个有趣的现象。

在服务设计时,你并不一定能完整预测有哪些下层服务会被多少个上层服务组装,因此领域层通常只提供一些原子服务,比如领域服务a、b、c。但随着系统功能增强和外部接入越来越多,应用服务会不断丰富。有一天你会发现领域服务b和c同时多次被多个应用服务调用了,执行顺序也基本一致。这时你可以考虑将b和c合并,再将应用服务中b、c的功能下沉到领域层,演进为新的领域服务(b+c)。这样既减少了服务的数量,也减轻了上层服务组合和编排的复杂度。

你看,这就是服务演进的过程,它是随着你的系统发展的,最后你会发现你的领域模型会越来越精炼,越来越能适应需求的快速变化。

三层架构如何演进到DDD分层架构?

由于层间松耦合,我们可以专注于本层的设计,而不必关心其它层,也不必担心自己的设计会影响其它层。可以说,DDD成功地降低了层与层之间的依赖。

其次,分层架构使得程序结构变得清晰,升级和维护更加容易。我们修改某层代码时,只要本层的接口参数不变,其它层可以不必修改。即使本层的接口发生变化,也只影响相邻的上层,修改工作量小且错误可以控制,不会带来意外的风险。

那我们该怎样转向DDD分层架构呢?不妨看看下面这个过程。

传统企业应用大多是单体架构,而单体架构则大多是三层架构。三层架构解决了程序内代码间调用复杂、代码职责不清的问题,但这种分层是逻辑概念,在物理上它是中心化的集中式架构,并不适合分布式微服务架构。

DDD分层架构中的要素其实和三层架构类似,只是在DDD分层架构中,这些要素被重新归类,重新划分了层,确定了层与层之间的交互规则和职责边界。

三层架构向DDD分层架构演进,主要发生在业务逻辑层和数据访问层。

DDD分层架构在用户接口层引入了DTO,给前端提供了更多的可使用数据和更高的展示灵活性。

DDD分层架构对三层架构的业务逻辑层进行了更清晰的划分,改善了三层架构核心业务逻辑混乱,代码改动相互影响大的情况。DDD分层架构将业务逻辑层的服务拆分到了应用层和领域层。应用层快速响应前端的变化,领域层实现领域模型的能力。

另外一个重要的变化发生在数据访问层和基础层之间。三层架构数据访问采用DAO方式;DDD分层架构的数据库等基础资源访问,采用了仓储(Repository)设计模式,通过依赖倒置实现各层对基础资源的解耦。

关于仓储。仓储本身属于基础层,但考虑到一个聚合对应一个仓储,为了以后聚合代码整体迁移方便,在微服务代码目录设计时,在聚合目录下增加一个Repository的仓储目录,跟仓储相关的代码都在这个目录下。

这个目录下的代码与聚合的其它业务代码是分开的。如果未来换数据库,只需将Repository目录下的代码替换。而如果聚合需要整体迁移到其它微服务中去,仓储的代码也会一并迁移。

仓储又分为两部分:仓储接口和仓储实现。仓储接口放在领域层中,仓储实现放在基础层。原来三层架构通用的第三方工具包、驱动、Common、Utility、Config等通用的公共的资源类统一放到了基础层。

总结

DDD分层架构包含用户接口层、应用层、领域层和基础层。通过这些层次划分,我们可以明确微服务各层的职能,划定各领域对象的边界,确定各领域对象的协作方式。

-End-

最近有一些小伙伴,让我帮忙找一些 面试题 资料,于是我翻遍了收藏的 5T 资料后,汇总整理出来,可以说是程序员面试必备!所有资料都整理到网盘了,欢迎下载!

点击????卡片,关注后回复【面试题】即可获取

在看点这里好文分享给更多人↓↓

以上是关于DDD领域驱动设计实战-分层架构及代码目录结构的主要内容,如果未能解决你的问题,请参考以下文章

DDD领域驱动设计:四层架构应用

DDD领域驱动设计:四层架构应用

DDD 领域驱动设计落地实践系列:工程结构分层设计

DDD-领域驱动设计重构的痛点及项目结构的划分

领域驱动设计 领域事件DDD分层架构

解构领域驱动设计:领域驱动设计的核心之分层架构