pandas去重

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas去重相关的知识,希望对你有一定的参考价值。

参考技术A DataFrame的duplicated方法返回一个布尔型Series,表示各行是否重复行。

而 drop_duplicates方法,它用于返回一个移除了重复行的DataFrame

这两个方法会判断全部列,你也可以指定部分列进行重复项判段。

例如,希望对名字为k2的列进行去重,

data.drop_duplicates(['k2'])

pandas-22 数据去重处理

pandas-22 数据去重处理

数据去重可以使用duplicated()和drop_duplicates()两个方法。
DataFrame.duplicated(subset = None,keep =‘first’ )返回boolean Series表示重复行
参数:
subset:列标签或标签序列,可选
仅考虑用于标识重复项的某些列,默认情况下使用所有列
keep:‘first’,‘last’,False,默认’first’

  • first:标记重复,True除了第一次出现。
  • last:标记重复,True除了最后一次出现。
  • 错误:将所有重复项标记为True。
import numpy as np
import pandas as pd
from pandas import Series, DataFrame

df = pd.read_csv('./demo_duplicate.csv')
print(df)
print(df['Seqno'].unique()) # [0. 1.]

# 使用duplicated 查看 重复值
# 参数 keep 可以标记重复值 'first','last',False
print(df['Seqno'].duplicated())
'''
0    False
1     True
2     True
3     True
4    False
Name: Seqno, dtype: bool
'''

# 删除 series 重复数据
print(df['Seqno'].drop_duplicates())
'''
0    0.0
4    1.0
Name: Seqno, dtype: float64
'''

# 删除 dataframe 重复数据
print(df.drop_duplicates(['Seqno'])) # 按照 Seqno 来 去重
'''
    Price  Seqno Symbol        time
0  1623.0    0.0   APPL  1473411962
4  1649.0    1.0   APPL  1473411963
'''
# drop_dujplicates() 第二个参数 keep 包含的值 有: first、last、False
print(df.drop_duplicates(['Seqno'], keep='last')) # 保存最后一个
'''
    Price  Seqno Symbol        time
3  1623.0    0.0   APPL  1473411963
4  1649.0    1.0   APPL  1473411963
'''

以上是关于pandas去重的主要内容,如果未能解决你的问题,请参考以下文章

pandas根据某列去重

python pandas dataframe 去重函数

python pandas dataframe 去重函数

pandas索引的数据查找排序和去重小结

Python数据分析pandas去重和替换

Pandas中数据去重