ios OpenCv的配置和人脸识别技术
Posted lxjshuju
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ios OpenCv的配置和人脸识别技术相关的知识,希望对你有一定的参考价值。
作为一个好奇心非常重的人,面对未知的世界都想去一探到底。
于是做了个人脸识别的demo。
眼下国内的关于opencv技术文章非常少。都是互相抄袭。关键是抄个一小部分还不全。时间又是非常久之前的了,和如今的一些东西对不上。
没事,我是个实在人,啥也不多说,直接上開始。期间參考了国内很多opencv的文章,代码部分參考http://m.blog.csdn.net/blog/u013810454/27868973。大家能够查看。只是他那个项目下载下来有问题。
我这个融合了全部的长处,更加全面。从配置到使用。
首先我们来配置opencv在xcodeproject。
1.opencv官网下载ios下的框架,先把opencv2.framework下载下来。
然后直接拖到先前创建好的工程中。
然后
然后
如今主要的配置已经完毕。是时候展现真正的技术了。当然别忘记把.m改成.mm。以便使用c++。
#import "ViewController.h" #import <Foundation/Foundation.h> int currentvalue = 9; @interface ViewController ()<UIImagePickerControllerDelegate,UINavigationControllerDelegate> { //显示图片 UIImageView *_imageView; UIImage *image; } @end @implementation ViewController - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. [self createButton]; //创建一个UIImagePickerController对象 UIImagePickerController *ctrl = [[UIImagePickerController alloc] init]; //设置类型 ctrl.sourceType = UIImagePickerControllerSourceTypePhotoLibrary; //设置代理 ctrl.delegate = self; //显示 [self presentViewController:ctrl animated:YES completion:nil]; self.view.backgroundColor = [UIColor whiteColor]; //创建一个UIImageView,用来显示选择的图片 _imageView = [[UIImageView alloc] initWithFrame:CGRectMake(50, 100, 300, 400)]; [self.view addSubview:_imageView]; } #pragma mark - UIImagePickerController代理 -(void)imagePickerController:(UIImagePickerController *)picker didFinishPickingMediaWithInfo:(NSDictionary *)info { //取到选择的图片 image = info[UIImagePickerControllerOriginalImage]; UIImageOrientation imageOrientation=image.imageOrientation; if(imageOrientation!=UIImageOrientationUp) { // 原始图片能够依据照相时的角度来显示,但UIImage无法判定,于是出现获取的图片会向左转90度的现象。 // 下面为调整图片角度的部分 UIGraphicsBeginImageContext(image.size); [image drawInRect:CGRectMake(0, 0, image.size.width, image.size.height)]; image = UIGraphicsGetImageFromCurrentImageContext(); UIGraphicsEndImageContext(); // 调整图片角度完成 } //处理图片 _imageView.image = image; [picker dismissViewControllerAnimated:YES completion:nil]; } -(void)imagePickerControllerDidCancel:(UIImagePickerController *)picker { [picker dismissViewControllerAnimated:YES completion:nil]; } //把image转化成opencv的图片格式 - (IplImage *)CreateIplImageFromUIImage:(UIImage *)image { CGImageRef imageRef = image.CGImage; CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB(); IplImage *iplimage = cvCreateImage(cvSize(image.size.width, image.size.height), IPL_DEPTH_8U, 4); CGContextRef contextRef = CGBitmapContextCreate(iplimage->imageData, iplimage->width, iplimage->height, iplimage->depth, iplimage->widthStep, colorSpace, kCGImageAlphaPremultipliedLast|kCGBitmapByteOrderDefault); CGContextDrawImage(contextRef, CGRectMake(0, 0, image.size.width, image.size.height), imageRef); CGContextRelease(contextRef); CGColorSpaceRelease(colorSpace); IplImage *ret = cvCreateImage(cvGetSize(iplimage), IPL_DEPTH_8U, 3); cvCvtColor(iplimage, ret, CV_RGBA2BGR); cvReleaseImage(&iplimage); return ret; } - (void) opencvFaceDetect { UIImage* img = [image copy]; if(img) { cvSetErrMode(CV_ErrModeParent); IplImage *image = [self CreateIplImageFromUIImage:img]; IplImage *grayImg = cvCreateImage(cvGetSize(image), IPL_DEPTH_8U, 1); //先转为灰度图 cvCvtColor(image, grayImg, CV_BGR2GRAY); //将输入图像缩小4倍以加快处理速度 int scale = 4; IplImage *small_image = cvCreateImage(cvSize(image->width/scale,image->height/scale), IPL_DEPTH_8U, 1); cvResize(grayImg, small_image); //载入分类器 NSString *path = [[NSBundle mainBundle] pathForResource:@"haarcascade_frontalface_alt2" ofType:@"xml"]; CvHaarClassifierCascade* cascade = (CvHaarClassifierCascade*)cvLoad([path cStringUsingEncoding:NSASCIIStringEncoding], NULL, NULL, NULL); CvMemStorage* storage = cvCreateMemStorage(0); cvClearMemStorage(storage); //关键部分。使用cvHaarDetectObjects进行检測。得到一系列方框 CvSeq* faces = cvHaarDetectObjects(small_image, cascade, storage ,1.1, currentvalue, CV_HAAR_DO_CANNY_PRUNING, cvSize(0,0), cvSize(0, 0)); NSLog(@"faces:%d",faces->total); //创建画布将人脸部分标记出 CGImageRef imageRef = img.CGImage; CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB(); CGContextRef contextRef = CGBitmapContextCreate(NULL, img.size.width, img.size.height,8, img.size.width * 4,colorSpace, kCGImageAlphaPremultipliedLast|kCGBitmapByteOrderDefault); CGContextDrawImage(contextRef, CGRectMake(0, 0, img.size.width, img.size.height), imageRef); CGContextSetLineWidth(contextRef, 4); CGContextSetRGBStrokeColor(contextRef, 1.0, 0.0, 0.0, 1); //对人脸进行标记 for(int i = 0; i < faces->total; i++) { // Calc the rect of faces CvRect cvrect = *(CvRect*)cvGetSeqElem(faces, i); CGRect face_rect = CGContextConvertRectToDeviceSpace(contextRef, CGRectMake(cvrect.x*scale, cvrect.y*scale , cvrect.width*scale, cvrect.height*scale)); CGContextStrokeRect(contextRef, face_rect); } _imageView.image = [UIImage imageWithCGImage:CGBitmapContextCreateImage(contextRef)]; } } //检測略耗时,开一个新线程来处理吧 -(void)btn { [NSThread detachNewThreadSelector:@selector(opencvFaceDetect) toTarget:self withObject:nil]; } -(void)createButton { UIButton *btn = [[UIButton alloc]init]; btn.backgroundColor = [UIColor redColor]; btn.frame = CGRectMake(0, 100, 30, 30); [btn addTarget:self action:@selector(btn) forControlEvents:UIControlEventTouchUpInside]; [self.view addSubview:btn]; } @end
ok,如今能够检測人脸了。
是不是非常奇妙。非常好玩?赶紧动手试一试吧。
以上是关于ios OpenCv的配置和人脸识别技术的主要内容,如果未能解决你的问题,请参考以下文章
25 行 Python 代码实现人脸识别——OpenCV 技术教程
在 Python 多处理进程中运行较慢的 OpenCV 代码片段