基于遗传算法优化SVM参数的热负荷预测,GA-SVM回归分析

Posted 神经网络机器学习智能算法画图绘图

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于遗传算法优化SVM参数的热负荷预测,GA-SVM回归分析相关的知识,希望对你有一定的参考价值。

目录

背影
支持向量机SVM的详细原理
SVM的定义
SVM理论
遗传算法的原理及步骤
SVM应用实例,基于遗传算法优化SVM的热负荷预测
代码
结果分析
展望

背影

负荷预测对现代智能化社会拥有重要意义,本文用遗传算法改进的SVM进行热负荷预测

支持向量机SVM的详细原理

SVM的定义

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
(1)支持向量机(Support Vector Machine, SVM)是一种对数据进行二分类的广义线性分类器,其分类边界是对学习样本求解的最大间隔超平面。

(2)SVM使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器 。

(3)SVM可以通过引入核函数进行非线性分类。

SVM理论

1,线性可分性

电力负荷预测基于matlab遗传算法优化BP神经网络电力负荷预测含Matlab源码 1524期

一、遗传算法简介

1 引言


2 遗传算法理论
2.1 遗传算法的生物学基础


2.2 遗传算法的理论基础




2.3 遗传算法的基本概念






2.4 标准的遗传算法


2.5 遗传算法的特点


2.6 遗传算法的改进方向

3 遗传算法流程



4 关键参数说明

二、BP神经网络简介

1 BP神经网络预测原理简介
BP 神经网络是一种多层前馈神经网络,常用的为输入层-单隐含层-输出层的三层结构,如下图所示。

BP神经网络训练的主要思想:输入的信号特征数据先映射到隐含层(激活函数实现),再映射到输出层(默认采用线性传递函数),得到期望输出值。将期望输出值和实际测量值做比较,计算误差函数J,再将误差反向传播,通过梯度下降等算法来调节BP网络的权值和阈值。重复该过程,直到满足设定的目标误差或者最大迭代次数等终止准则,停止训练。

通过下面的例子来理解每一层的作用。

1)输入层:相当于人的五官,五官获取外部信息,对应神经网络模型input端口接收输入数据的过程。
2)隐含层:对应人的大脑,大脑对五官传递来的数据进行分析和思考,神经网络的隐含层hidden Layer对输入层传来的数据x进行映射,简单理解为一个公式hiddenLayer_output=F(w*x+b)。其中,w、b叫做权重、阈值参数,F()为映射规则,也叫激活函数,hiddenLayer_output是隐含层对于传来的数据映射的输出值。换句话说,隐含层对于输入的影响因素数据x进行了映射,产生了映射值。
3)输出层:可以对应为人的四肢,大脑对五官传来的信息经过思考(隐含层映射)之后,再控制四肢执行动作(向外部作出响应)。类似地,BP神经网络的输出层对hiddenLayer_output再次进行映射,outputLayer_output=w *hiddenLayer_output+b。其中,w、b为权重、阈值参数,outputLayer_output是神经网络输出层的输出值(也叫仿真值、预测值)(理解为,人脑对外的执行动作,比如婴儿拍打桌子)。
4)梯度下降算法:通过计算outputLayer_output和神经网络模型传入的y值之间的偏差,使用算法来相应调整权重和阈值等参数。这个过程,可以理解为婴儿拍打桌子,打偏了,根据偏离的距离远近,来调整身体使得再次挥动的胳膊不断靠近桌子,最终打中。

BP神经网络所实现的功能作用

“能尽数天星,便能尽知棋势”。围棋体现着大自然的道法,而在AlphaGo击败人类围棋冠军,则是使用算法来寻求围棋的道,实现人机对战。BP神经网络训练的结果:得到多维数据x与y之间存在的规律,即实现由x来映射逼近y。而BP训练出来得到的模型是否可靠,表现为对其他未经过训练的数据,输入到BP中,是否能输出较为准确的预测值。对此,在BP神经网络训练之后,还需要再给指标因素x1到训练好的bp network中,得到相应的BP输出值(预测值)predict1,通过作图等,计算Mse,Mape,R方等指标,来对比predict1和y1的接近程度,就可以知道模型是否预测准确。这是BP模型的测试过程,即预测过程。

小结 BP神经网络实现了:a). 根据训练集数据,训练得到一个模型,b). 对模型的可靠性与准确性进行测试集(不同于训练样本数据)预测,和实际值对比,检验预测的精度。c). 只给输入,得到预测值(可理解为测试集的数据丢了实测值,本质一样,给输入到BP中,得到输出)。由于该情况无输出,纯预测,无法检验精度是否合格,写论文时无太大意义而不必实现该情况的步骤。

2 遗传算法GA优化BP神经网络原理

在BP神经网络训练的过程中,通过前向传播数据与误差反向传递,使用算法来更新权重阈值。一方面,在该过程中,第一次前向传播过程的权重和阈值该如何确定,即如何初始化权重和阈值。深度学习的方法是采用随机化方法得到初始的权值与阈值参数。另一方面,选定了初始参数后,梯度下降算法将初始参数值作为起点,进行参数优化与更新。

在优化算法的发展中,有两类:确定性算法与启发式算法。确定性算法指使用数学方法求最优问题,找到的结果与求导的初始点有关,一般为确定值。启发式算法则是灵感源于自然界生物进化的规律,主要思想为迭代逼近最优,优化的结果为满足工程精度要求的可变值(无限接近理论最优值)。

在上述过程中,作为一种确定性算法,梯度下降算法的收敛性是得到了证明的,但收敛值并非一定是全局最优,与初始的参数值(梯度下降算法的起点)有关。由于随机初始的参数未必是最优的起点(指既训练准确,又预测可靠),因此训练的模型可靠性和稳定性受到了初始随机参数的很大影响。作为启发式算法,遗传算法GA具体很好的全局搜索能力,引入GA用来解决此问题。

主要思想 将参数作为问题的决策变量,模型的精度作为问题的目标函数。遗传算法GA优化BP神经网络的算法流程图如下:

3 GA-BP模型建立
3.1 模型与数据介绍
下面以MATLAB官方提供的化学传感器的数据集为例,进行建模。
数据介绍:采集某个化学实验过程的数据,将8个传感器的采样数据作为输入(x),第9个传感器的采样数据作为输出(y)。
数据格式如下:

读取数据:

%% 读取读取
data=xlsread('数据.xlsx','Sheet1','A1:I498'); %%使用xlsread函数读取EXCEL中对应范围的数据即可  

%输入输出数据
input=data(:,1:end-1);    %data的第一列-倒数第二列为特征指标
output=data(:,end);  %data的最后面一列为输出的指标值

N=length(output);   %全部样本数目
testNum=100;   %设定测试样本数目
trainNum=N-testNum;    %计算训练样本数目

3.2 GA与BP参数设置
1) BP参数设置

对权重和阈值有关的参数进行说明:
a). 输入层和输出层节点使用size函数直接获取。函数用法:[M,N]=size(A),M为A的行数,N为A的列数。size(A,2)得到的是第二个参数N,即列数。此数据中,输入8个维度指标,输出的为1个维度指标。即输入层节点为8,输出层节点为1。

inputnum=size(input,2);   %输入层神经元节点个数
outputnum=size(output,2);  %输出层神经元节点个数

b). 隐含层节点的确定过程,使用循环来遍历范围内的隐含层节点与训练误差情况。因为要找最小的误差,所以初始化训练误差时,将MSE设置较大的数字,用于在循环中确定最佳的隐含层节点。

%确定隐含层节点个数
%采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
MSE=1e+5; %初始化最小误差
for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10

c). 其他BP参数,学习速率,训练次数,训练的目标误差等

% 网络参数
    net.trainParam.epochs=1000;         % 训练次数
    net.trainParam.lr=0.01;             % 学习速率
    net.trainParam.goal=0.000001;       % 训练目标最小误差

2)遗传算法GA参数设置

%初始化ga参数
PopulationSize_Data=30;   %初始种群规模
MaxGenerations_Data=50;   %最大进化代数
CrossoverFraction_Data=0.8;  %交叉概率
MigrationFraction_Data=0.2;   %变异概率

3.3 遗传算法优化BP的设计
1)优化变量的设计
使用遗传算法求解优化问题时,对于决策变量(优化变量)有三种编码方式:二进制编码,向量形式编码,矩阵形式编码。

由于权重和阈值分别以m×n维的矩阵,向量形式存在与BP神经网络结构(net)中。为方便对每个元素都进行优化,先将元素分别取出,然后按取的顺序放入到向量(染色体)中,完成编码。权重和阈值的经验范围为[-1,1],可适当将寻优的范围放宽,取[-3,3]。
优化变量(元素)个数的计算如下:

nvars=inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum+outputnum;    %变量维度
lb=repmat(-3,nvars,1);    %自变量下限 %repmat得到一个nvars×1维的向量,每个元素的值都为-3,即优化变量下限
ub=repmat(3,nvars,1);   %自变量上限

2)适应度函数的设计
采用以下公式计算适应度值。

式中,TraingingSet,TestingSet,分别为训练集和测试集的样本。因为预测精度越高,说明误差越低,所以公式设计为求解最小的均方误差。使用遗传算法后,适应度函数值越小,表明训练越准确,且兼顾模型的预测精度更好。
3)算法设计
将遗传算法视为一个“黑箱”优化器。在确定了优化的变量与目标适应度函数后,只需要经过该“黑箱”,即可输出最小的误差(精度最好值)和最优解变量,再把变量赋给BP神经网络的权值矩阵与阈值向量的相应位置,进行优化后的BP训练与测试即可。说明:在遗传算法的“黑箱”求解器中进行的算法操作为:选择、交叉与变异。

二、部分源代码


%%% 清空环境变量
clc
clear all
close all

%%% 设置全局变量
global net inputn outputn inputps outputps output_test input_test;
global inputnum outputnum hiddennum;


%1.3 读取数据格式三:2个输入变量,2个输出变量
TrainData = textread('nanjingxunlian.txt');
TestData = textread('nanjingceshi.txt');



%1.5 训练样本输入、输出数据归一化
[inputn,inputps]=mapminmax(input_train);%inputn,inputps分别是归一化后的数据和结构体(包含最大值最小值平均数等)
[outputn,outputps]=mapminmax(output_train);

%1.6 BP网络结构
inputnum=5;   
hiddennum=3; 
outputnum=1;  

%%% 第二步: BP网络算法及其均方误差
tBP=cputime;%计时开始
[BPoutput,BPerror,BPmse,BPmape]=BP_ZHY(input_train,output_train,input_test,output_test);
eBP=cputime-tBP;%计时结束,得到建模仿真时间

figure(3)
[r c]=size(BPoutput);
plot([1:c],BPoutput(1,:),'b-');
grid;
axis tight;
xlabel('迭代次数');ylabel('BP网络预测');
title(['BP网络预测']);

figure(4)
[r c]=size(BPerror);
plot([1:c],BPerror(1,:),'b-');
grid;
axis tight;
xlabel('迭代次数');ylabel('BP网络预测误差');
title(['BP网络预测误差曲线']);



%3.2 遗传算法及其最优个体
[bestchrom,trace] = GABPbestchrom_ZHY(maxgen,sizepop,pcross,pmutation);

figure(5)
[r c]=size(GB_sim);
plot([1:c],GB_sim(1,:),'b-');
grid;
axis tight;
xlabel('迭代次数');ylabel('GB网络预测');
title(['GA优化BP网络预测']);

figure(6)
[r c]=size(GBerror);
plot([1:c],GBerror(1,:),'b-');
grid;
axis tight;
xlabel('迭代次数');ylabel('GB网络预测误差');
title(['GA优化BP网络预测误差曲线']);

%%% 第四步:两种算法结果对比分析 
figure(7)
[r c]=size(BPerror);
plot([1:c],BPoutput(1,:),'b-',[1:c],GB_sim(1,:),'r-',[1:c],output_test(1,:),'g-');
grid;
axis tight;
xlabel('进化代数');ylabel('预测');
legend('BP网络预测','GA优化BP网络预测','网络期望');
title(['2算法网络预测比较']);

figure(8)
[r c]=size(BPerror);
plot([1:c],BPerror(1,:),'b-',[1:c],GBerror(1,:),'r-');
grid;
axis tight;
xlabel('进化代数');ylabel('误差');
legend('BP预测误差','GA优化BP预测误差');
title(['误差曲线']);

figure(9)
[r c]=size(BPerror);
plot( [1:c],BPmape(1,:),'b-',[1:c],GBmape(1,:),'r-');
grid;
axis tight;
xlabel('进化代数');ylabel('百分比误差');
legend('BP预测百分比误差','GA优化BP预测百分比误差');
title(['误差曲线']);


disp(['BP建模仿真时间为:' num2str(eBP) 's'] );
disp(['GA优化后BP再建模仿真时间为:' num2str(eGB) 's'] );
disp(['BP均方误差为:' num2str(BPmse)] );
disp(['GA优化BP均方误差为:' num2str(GBmse)] );
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体
 for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
     % 随机选择两个染色体进行交叉
     pick=rand(1,2);
     while prod(pick)==0
         pick=rand(1,2);
     end
     index=ceil(pick.*sizepop);
     % 交叉概率决定是否进行交叉
     pick=rand;
     while pick==0
         pick=rand;
     end
     if pick>pcross
         continue;
     end
     flag=0;
     while flag==0
         % 随机选择交叉位
         pick=rand;
         while pick==0
             pick=rand;
         end
         pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
         pick=rand; %交叉开始
         v1=chrom(index(1),pos);
         v2=chrom(index(2),pos);
         chrom(index(1),pos)=pick*v2+(1-pick)*v1;
         chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
         flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
         flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
         if   flag1*flag2==0
             flag=0;
         else flag=1;
         end    %如果两个染色体不是都可行,则重新交叉
     end
 end
ret=chrom;

三、运行结果




四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
[4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
[5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.

以上是关于基于遗传算法优化SVM参数的热负荷预测,GA-SVM回归分析的主要内容,如果未能解决你的问题,请参考以下文章

SVM预测基于遗传算法优化实现SVM数据分类matlab源码

电力负荷预测基于matlab粒子群算法优化支持向量机预测电力负荷含Matlab源码 1225期

电力负荷预测基于matlab灰狼算法优化LSTM短期电力负荷预测含Matlab源码 1230期

优化预测基于matlab遗传算法优化BP神经网络预测含Matlab源码 1376期

SVM分类基于遗传算法优化实现SVM数据分类matlab源码

SVM分类基于遗传算法优化实现SVM数据分类matlab源码