SpringCloudAlibaba微服务组件Sentinel
Posted Cry丶
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SpringCloudAlibaba微服务组件Sentinel相关的知识,希望对你有一定的参考价值。
文章目录
1. 前言
课前思考:
1、当服务访问量达到一定程度,流量扛不住的时候,该如何处理?
2、服务之间相互依赖,当服务A出现响应时间过长,影响到服务B的响应,进而产生连锁反应,直至影响整个依赖链上的所有服务,该如何处理?
这是分布式、微服务开发不可避免的问题。
1.1 分布式系统遇到的问题
在一个高度服务化的系统中,我们实现的一个业务逻辑通常会依赖多个服务,比如:商品详情展示服务会依赖商品服务, 价格服务, 商品评论服务. 如图所示:
调用三个依赖服务会共享商品详情服务的线程池. 如果其中的商品评论服务不可用, 就会出现线程池里所有线程都因等待响应而被阻塞, 从而造成服务雪崩. 如图所示:
服务雪崩效应:因服务提供者的不可用导致服务调用者的不可用,并将不可用逐渐放大的过程,就叫服务雪崩效应
导致服务不可用的原因: 程序Bug,大流量请求,硬件故障,缓存击穿
【大流量请求】:在秒杀和大促开始前,如果准备不充分,瞬间大量请求会造成服务提供者的不可用。
【硬件故障】:可能为硬件损坏造成的服务器主机宕机, 网络硬件故障造成的服务提供者的不可访问。
【缓存击穿】:一般发生在缓存应用重启, 缓存失效时高并发,所有缓存被清空时,以及短时间内大量缓存失效时。大量的缓存不命中, 使请求直击后端,造成服务提供者超负荷运行,引起服务不可用。
在服务提供者不可用的时候,会出现大量重试的情况:用户重试、代码逻辑重试,这些重试最终导致:进一步加大请求流量。所以归根结底导致雪崩效应的最根本原因是:大量请求线程同步等待造成的资源耗尽。当服务调用者使用同步调用时, 会产生大量的等待线程占用系统资源。一旦线程资源被耗尽,服务调用者提供的服务也将处于不可用状态, 于是服务雪崩效应产生了。
1.2 解决方案
超时机制
在不做任何处理的情况下,服务提供者不可用会导致消费者请求线程强制等待,而造成系统资源耗尽。加入超时机制,一旦超时,就释放资源。由于释放资源速度较快,一定程度上可以抑制资源耗尽的问题。
服务限流(资源隔离)
限制请求核心服务提供者的流量,使大流量拦截在核心服务之外,这样可以更好的保证核心服务提供者不出问题,对于一些出问题的服务可以限制流量访问,只分配固定线程资源访问,这样能使整体的资源不至于被出问题的服务耗尽,进而整个系统雪崩。那么服务之间怎么限流,怎么资源隔离?例如可以通过线程池+队列的方式,通过信号量的方式。
如下图所示, 当商品评论服务不可用时, 即使商品服务独立分配的20个线程全部处于同步等待状态,也不会影响其他依赖服务的调用。
服务熔断
远程服务不稳定或网络抖动时暂时关闭,就叫服务熔断。
现实世界的断路器大家肯定都很了解,断路器实时监控电路的情况,如果发现电路电流异常,就会跳闸,从而防止电路被烧毁。
软件世界的断路器可以这样理解:实时监测应用,如果发现在一定时间内失败次数/失败率达到一定阈值,就“跳闸”,断路器打开——此时,请求直接返回,而不去调用原本调用的逻辑。跳闸一段时间后(例如10秒),断路器会进入半开状态,这是一个瞬间态,此时允许一次请求调用该调的逻辑,如果成功,则断路器关闭,应用正常调用;如果调用依然不成功,断路器继续回到打开状态,过段时间再进入半开状态尝试——通过”跳闸“,应用可以保护自己,而且避免浪费资源;而通过半开的设计,可实现应用的“自我修复“。
所以,同样的道理,当依赖的服务有大量超时时,在让新的请求去访问根本没有意义,只会无畏的消耗现有资源。比如我们设置了超时时间为1s,如果短时间内有大量请求在1s内都得不到响应,就意味着这个服务出现了异常,此时就没有必要再让其他的请求去访问这个依赖了,这个时候就应该使用断路器避免资源浪费。
服务降级
有服务熔断,必然要有服务降级。
所谓降级,就是当某个服务熔断之后,服务将不再被调用,此时客户端可以自己准备一个本地的fallback(回退)回调,返回一个缺省值。 例如:(备用接口/缓存/mock数据) 。这样做,虽然服务水平下降,但好歹可用,比直接挂掉要强,当然这也要看适合的业务场景。
总结:某个微服务不可用,如何防止其影响微服务调用链中的其他服务的"雪崩"?
- 1.设置服务超时时间,超时直接返回
- 2.入口服务设置限流
- 3.入口服务用消息中间件削峰
- 4.服务之间的线程资源隔离
- 5.服务熔断:在一定时间内失败次数/失败率达到一定阈值,就“跳闸”,断路器打开——此时,请求直接返回,而不去调用原本调用的逻辑。
- 5.0 服务降级:配合服务熔断使用,所谓降级,就是当某个服务熔断之后,服务将不再被调用,此时客户端可以自己准备一个本地的fallback(回退)回调, 返回一个缺省值。 例如:(备用接口/缓存/mock数据) 。这样做,虽然服务水平下降,但好歹可用,比直接挂掉要强,当然这也要看适合的业务场景。
2. Sentinel: 分布式系统的流量防卫兵
2.1 Sentinel 是什么
随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式服务架构的流量控制组件,主要以流量为切入点,从限流、流量整形、熔断降级、系统负载保护、热点防护等多个维度来帮助开发者保障微服务的稳定性。
源码地址:https://github.com/alibaba/Sentinel
官方文档:https://github.com/alibaba/Sentinel/wiki
Sentinel具有以下特征:
- 丰富的应用场景: Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、实时熔断下游不可用应用等。
- 完备的实时监控: Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
- 广泛的开源生态: Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
- 完善的 SPI 扩展点: Sentinel 提供简单易用、完善的 SPI 扩展点。您可以通过实现扩展点,快速的定制逻辑。例如定制规则管理、适配数据源等。
阿里云提供了 企业级的 Sentinel 服务,应用高可用服务 AHAS
Sentinel和Hystrix对比
https://github.com/alibaba/Sentinel/wiki/Sentinel-%E4%B8%8E-Hystrix-%E7%9A%84%E5%AF%B9%E6%AF%94
2.2 Sentinel 工作原理
2.2.1 基本概念
资源
资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。在接下来的文档中,我们都会用资源来描述代码块。
只要通过 Sentinel API 定义的代码,就是资源,能够被 Sentinel 保护起来。大部分情况下,可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。
规则2
围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整。
2.2.2 Sentinel工作主流程
https://github.com/alibaba/Sentinel/wiki/Sentinel%E5%B7%A5%E4%BD%9C%E4%B8%BB%E6%B5%81%E7%A8%8B
在 Sentinel 里面,所有的资源都对应一个资源名称(resourceName),每次资源调用都会创建一个 Entry 对象。Entry 可以通过对主流框架的适配自动创建,也可以通过注解的方式或调用 SphU API 显式创建。Entry 创建的时候,同时也会创建一系列功能插槽(slot chain),这些插槽有不同的职责,例如:
NodeSelectorSlot
负责收集资源的路径,并将这些资源的调用路径,以树状结构存储起来,用于根据调用路径来限流降级;ClusterBuilderSlot
则用于存储资源的统计信息以及调用者信息,例如该资源的 RT, QPS, thread count 等等,这些信息将用作为多维度限流,降级的依据;StatisticSlot
则用于记录、统计不同纬度的 runtime 指标监控信息;FlowSlot
则用于根据预设的限流规则以及前面 slot 统计的状态,来进行流量控制;AuthoritySlot
则根据配置的黑白名单和调用来源信息,来做黑白名单控制;DegradeSlot
则通过统计信息以及预设的规则,来做熔断降级;SystemSlot
则通过系统的状态,例如 load1 等,来控制总的入口流量;
2.3 Sentinel快速开始
在官方文档中,定义的Sentinel进行资源保护的几个步骤:
1.定义资源
2.定义规则
3.检验规则是否生效
Entry entry = null;
// 务必保证 finally 会被执行
try
// 资源名可使用任意有业务语义的字符串 开启资源的保护
entry = SphU.entry("自定义资源名");
// 被保护的业务逻辑 method
// do something...
catch (BlockException ex)
// 资源访问阻止,被限流或被降级 Sentinel定义异常 流控规则,降级规则,热点参数规则。。。。 服务降级(降级规则)
// 进行相应的处理操作
catch (Exception ex)
// 若需要配置降级规则,需要通过这种方式记录业务异常 RuntimeException 服务降级 mock feign:fallback
Tracer.traceEntry(ex, entry);
finally
// 务必保证 exit,务必保证每个 entry 与 exit 配对
if (entry != null)
entry.exit();
Sentinel资源保护的方式
API实现
1.引入依赖
<dependency>
<groupId>com.alibaba.csp</groupId>
<artifactId>sentinel-core</artifactId>
<version>1.8.0</version>
</dependency>
2.编写测试逻辑
@RestController
@Slf4j
public class HelloController
private static final String RESOURCE_NAME = "hello";
@RequestMapping(value = "/hello")
public String hello()
Entry entry = null;
try
// 资源名可使用任意有业务语义的字符串,比如方法名、接口名或其它可唯一标识的字符串。
entry = SphU.entry(RESOURCE_NAME);
// 被保护的业务逻辑
String str = "hello world";
log.info("====="+str);
return str;
catch (BlockException e1)
// 资源访问阻止,被限流或被降级
//进行相应的处理操作
log.info("block!");
catch (Exception ex)
// 若需要配置降级规则,需要通过这种方式记录业务异常
Tracer.traceEntry(ex, entry);
finally
if (entry != null)
entry.exit();
return null;
/**
* 定义流控规则
*/
@PostConstruct
private static void initFlowRules()
List<FlowRule> rules = new ArrayList<>();
FlowRule rule = new FlowRule();
//设置受保护的资源
rule.setResource(RESOURCE_NAME);
// 设置流控规则 QPS
rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
// 设置受保护的资源阈值
// Set limit QPS to 20.
rule.setCount(1);
rules.add(rule);
// 加载配置好的规则
FlowRuleManager.loadRules(rules);
测试效果:
缺点:
- 业务侵入性很强,需要在controller中写入非业务代码.
- 配置不灵活 若需要添加新的受保护资源 需要手动添加 init方法来添加流控规则
@SentinelResource注解实现
@SentinelResource 注解用来标识资源是否被限流、降级。
blockHandler: 定义当资源内部发生了BlockException应该进入的方法(捕获的是Sentinel定义的异常)
fallback: 定义的是资源内部发生了Throwable应该进入的方法
exceptionsToIgnore:配置fallback可以忽略的异常
源码入口:com.alibaba.csp.sentinel.annotation.aspectj.SentinelResourceAspect
1.引入依赖
<dependency>
<groupId>com.alibaba.csp</groupId>
<artifactId>sentinel-annotation-aspectj</artifactId>
<version>1.8.0</version>
</dependency>
2.配置切面支持
@Configuration
public class SentinelAspectConfiguration
@Bean
public SentinelResourceAspect sentinelResourceAspect()
return new SentinelResourceAspect();
3.UserController中编写测试逻辑,添加@SentinelResource,并配置blockHandler和fallback
@RequestMapping(value = "/findOrderByUserId/id")
@SentinelResource(value = "findOrderByUserId",
fallback = "fallback",fallbackClass = ExceptionUtil.class,
blockHandler = "handleException",blockHandlerClass = ExceptionUtil.class
)
public R findOrderByUserId(@PathVariable("id") Integer id)
//ribbon实现
String url = "http://mall-order/order/findOrderByUserId/"+id;
R result = restTemplate.getForObject(url,R.class);
if(id==4)
throw new IllegalArgumentException("非法参数异常");
return result;
4.编写ExceptionUtil,注意如果指定了class,方法必须是static方法
public class ExceptionUtil
public static R fallback(Integer id,Throwable e)
return R.error(-2,"===被异常降级啦===");
public static R handleException(Integer id, BlockException e)
return R.error(-2,"===被限流啦===");
5.流控规则设置可以通过Sentinel dashboard配置
客户端需要引入 Transport 模块来与 Sentinel 控制台进行通信。
<dependency>
<groupId>com.alibaba.csp</groupId>
<artifactId>sentinel-transport-simple-http</artifactId>
<version>1.8.0</version>
</dependency>
6.启动 Sentinel 控制台
下载控制台 jar 包并在本地启动:
#启动控制台命令
java -jar sentinel-dashboard-1.8.0.jar
用户可以通过如下参数进行配置:
-Dsentinel.dashboard.auth.username=sentinel 用于指定控制台的登录用户名为 sentinel;
-Dsentinel.dashboard.auth.password=123456 用于指定控制台的登录密码为 123456;如果省略这两个参数,默认用户和密码均为 sentinel;
-Dserver.servlet.session.timeout=7200 用于指定 Spring Boot 服务端 session 的过期时间,如 7200 表示 7200 秒;60m 表示 60 分钟,默认为 30 分钟;
访问http://localhost:8080/#/login ,默认用户名密码: sentinel/sentinel
cp
Sentinel 会在客户端首次调用的时候进行初始化,开始向控制台发送心跳包,所以要确保客户端有访问量;
2.4 Spring Cloud Alibaba整合Sentinel
1.引入依赖
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
2.添加yml配置,为微服务设置sentinel控制台地址
添加Sentinel后,需要暴露/actuator/sentinel端点,而Springboot默认是没有暴露该端点的,所以需要设置,测试http://localhost:8800/actuator/sentinel
server:
port: 8800
spring:
application:
name: mall-user-sentinel-demo
cloud:
nacos:
discovery:
server-addr: 127.0.0.1:8848
sentinel:
transport:
# 添加sentinel的控制台地址
dashboard: 127.0.0.1:8080
# 指定应用与Sentinel控制台交互的端口,应用本地会起一个该端口占用的HttpServer
# port: 8719
#暴露actuator端点
management:
endpoints:
web:
exposure:
include: '*'
3.在sentinel控制台中设置流控规则
- 资源名: 接口的API
- 针对来源: 默认是default,当多个微服务都调用这个资源时,可以配置微服务名来对指定的微服务设置阈值
- 阈值类型: 分为QPS和线程数 假设阈值为10
- QPS类型: 只得是每秒访问接口的次数>10就进行限流
- 线程数: 为接受请求该资源分配的线程数>10就进行限流
测试: 因为QPS是1,所以1秒内多次访问会出现如下情形:
访问http://localhost:8800/actuator/sentinel, 可以查看flowRules
微服务和Sentinel Dashboard通信原理
Sentinel控制台与微服务端之间,实现了一套服务发现机制,集成了Sentinel的微服务都会将元数据传递给Sentinel控制台,架构图如下所示:
以上是关于SpringCloudAlibaba微服务组件Sentinel的主要内容,如果未能解决你的问题,请参考以下文章
SpringCloudAlibaba微服务组件Sentinel
SpringCloudAlibaba微服务组件Sentinel