dlib实现人脸识别(一)生成描述文件和标签文件
Posted 等待破茧
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了dlib实现人脸识别(一)生成描述文件和标签文件相关的知识,希望对你有一定的参考价值。
#include <iostream>
#include <dlib/dnn.h>
#include <dlib/data_io.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
#include <dlib/dnn.h>
#include <dlib/gui_widgets.h>
#include <dlib/clustering.h>
#include <dlib/string.h>
#include <dlib/image_io.h>
#if 0
#include <opencv2/opencv.hpp>
#endif
#include <vector>
#include <dlib/opencv.h>
#include <opencv2/highgui/highgui.hpp>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/image_processing/frontal_face_detector.h>
using namespace std;
using namespace dlib;
using namespace cv;
// ----------------------------------------------------------------------------------------
template <long num_filters, typename SUBNET> using con5d = con<num_filters, 5, 5, 2, 2, SUBNET>;
template <long num_filters, typename SUBNET> using con5 = con<num_filters, 5, 5, 1, 1, SUBNET>;
template <typename SUBNET> using downsampler = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16, SUBNET>>>>>>>>>;
template <typename SUBNET> using rcon5 = relu<affine<con5<45, SUBNET>>>;
using net_type = loss_mmod<con<1, 9, 9, 1, 1, rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;
template <template <int, template<typename>class, int, typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = add_prev1<block<N, BN, 1, tag1<SUBNET>>>;
template <template <int, template<typename>class, int, typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = add_prev2<avg_pool<2, 2, 2, 2, skip1<tag2<block<N, BN, 2, tag1<SUBNET>>>>>>;
template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<con<N, 3, 3, 1, 1, relu<BN<con<N, 3, 3, stride, stride, SUBNET>>>>>;
template <int N, typename SUBNET> using ares = relu<residual<block, N, affine, SUBNET>>;
template <int N, typename SUBNET> using ares_down = relu<residual_down<block, N, affine, SUBNET>>;
template <typename SUBNET> using alevel0 = ares_down<256, SUBNET>;
template <typename SUBNET> using alevel1 = ares<256, ares<256, ares_down<256, SUBNET>>>;
template <typename SUBNET> using alevel2 = ares<128, ares<128, ares_down<128, SUBNET>>>;
template <typename SUBNET> using alevel3 = ares<64, ares<64, ares<64, ares_down<64, SUBNET>>>>;
template <typename SUBNET> using alevel4 = ares<32, ares<32, ares<32, SUBNET>>>;
using anet_type = loss_metric<fc_no_bias<128, avg_pool_everything<
alevel0<
alevel1<
alevel2<
alevel3<
alevel4<
max_pool<3, 3, 2, 2, relu<affine<con<32, 7, 7, 2, 2,
input_rgb_image_sized<150>
>>>>>>>>>>>>;
/*
matrix<rgb_pixel> img;
cv::Mat image = cv::imread(path);
array2d< bgr_pixel> arrimg(image.rows, image.cols);
dlib::assign_image(img, cv_image<rgb_pixel>(image));
*/
std::vector<matrix<rgb_pixel>> jitter_image(
const matrix<rgb_pixel>& img
)
// All this function does is make 100 copies of img, all slightly jittered by being
// zoomed, rotated, and translated a little bit differently. They are also randomly
// mirrored left to right.
thread_local dlib::rand rnd;
std::vector<matrix<rgb_pixel>> crops;
for (int i = 0; i < 100; ++i)
crops.push_back(jitter_image(img, rnd));
return crops;
void listFiles(const char * dir, std::vector<string> &vfile)
using namespace std;
HANDLE hFind;
WIN32_FIND_DATA findData;
LARGE_INTEGER size;
char dirNew[100];
// 向目录加通配符,用于搜索第一个文件
strcpy(dirNew, dir);
strcat(dirNew, "\\\\*.*");
hFind = FindFirstFile(dirNew, &findData);
do
// 是否是文件夹,并且名称不为"."或".."
if (findData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY != 0
&& strcmp(findData.cFileName, ".") != 0
&& strcmp(findData.cFileName, "..") != 0
)
// 将dirNew设置为搜索到的目录,并进行下一轮搜索
strcpy(dirNew, dir);
strcat(dirNew, "\\\\");
strcat(dirNew, findData.cFileName);
//listFiles(dirNew);
else
size.LowPart = findData.nFileSizeLow;
size.HighPart = findData.nFileSizeHigh;
//cout << findData.cFileName << "\\t" << size.QuadPart << " bytes\\n";
vfile.push_back(findData.cFileName);
while (FindNextFile(hFind, &findData));
FindClose(hFind);
return;
Mat MyResizeImage(Mat pSrc, double dScale)
IplImage *pImgSrc = &IplImage(pSrc);
CvSize size;
size.width = pImgSrc->width*dScale;
size.height = pImgSrc->height*dScale;
IplImage *pDes = cvCreateImage(size, pImgSrc->depth, pImgSrc->nChannels);
cvResize(pImgSrc, pDes, CV_INTER_CUBIC);
Mat matDes = cvarrToMat(pDes, true);
cvReleaseImage(&pDes);
return matDes;
int main(int argc, char*argv[])
try
//创建人脸检测对象
net_type net;
deserialize("./mmod_human_face_detector.dat") >> net;
//创建人脸特征点检测对象
shape_predictor sp;
deserialize("shape_predictor_68_face_landmarks.dat") >> sp;
//创建人脸识别对象
anet_type facerec;
deserialize("dlib_face_recognition_resnet_model_v1.dat") >> facerec;
//加载需要识别的图片对象
std::vector<string> arrFiles;
listFiles("./images/", arrFiles);
std::vector<string>::iterator it_begin = arrFiles.begin();
std::vector<string>::iterator it_end = arrFiles.end();
//人脸描述队列
std::vector<matrix<float, 0, 1>> arrSerialize;
//标签队列
std::vector<string> arrLabel;
//显示窗口
image_window img_win;
for (; it_begin != it_end; ++it_begin)
string ext = strrchr((*it_begin).c_str(), '.');
cout << ext.c_str() << endl;
if (ext == ".jpg")
string strTmpJpg = "./images/";
string strJpgName = (*it_begin).substr(0, (*it_begin).rfind("."));
strTmpJpg += (*it_begin).c_str();
//get image
cv::Mat tempimg = imread(strTmpJpg.c_str());
cv::Mat image2 = MyResizeImage(tempimg, 0.5);
cv_image<bgr_pixel> cimg(image2);
matrix<rgb_pixel> img;
dlib::assign_image(img, cimg);
//检测画面中的人脸
auto dets = net(img);
std::vector<matrix<rgb_pixel>> faces;
std::vector<full_object_detection> shapes;
for (auto&& d : dets)
// get the landmarks for this human's face
auto shape = sp(img, d.rect); //获取人脸区域68个特征点
matrix<rgb_pixel> face_chip;
extract_image_chip(img, get_face_chip_details(shape, 150, 0.25), face_chip);
faces.push_back(move(face_chip));
shapes.push_back(shape);
if (faces.size() == 0)
cout << "No faces found in image!" << endl;
return 1;
//获取人脸描述
std::vector<matrix<float, 0, 1>> face_descriptors = facerec(faces);
std::vector<sample_pair> edges;
for (size_t i = 0; i < face_descriptors.size(); ++i)
for (size_t j = i; j < face_descriptors.size(); ++j)
if (length(face_descriptors[i] - face_descriptors[j]) < 0.6)
edges.push_back(sample_pair(i, j));
std::vector<unsigned long> labels;
const auto num_clusters = chinese_whispers(edges, labels);
cout << "number of people found in the image: " << num_clusters << endl;
std::vector<image_window> win_clusters(num_clusters);
img_win.set_title("img");
img_win.clear_overlay();
img_win.set_image(img);
img_win.add_overlay(render_face_detections(shapes));
for (size_t cluster_id = 0; cluster_id < num_clusters; ++cluster_id)
std::vector<matrix<rgb_pixel>> temp;
for (size_t j = 0; j < labels.size(); ++j)
if (cluster_id == labels[j])
temp.push_back(faces[j]);
win_clusters[cluster_id].set_title("face cluster " + cast_to_string(cluster_id));
win_clusters[cluster_id].set_image(tile_images(temp));
arrSerialize.push_back(face_descriptors[0]);
arrLabel.push_back(strJpgName);
serialize("assigner.dat") << arrSerialize;
serialize("label.dat") << arrLabel;
catch (exception& e)
cout << e.what() << endl;
以上是关于dlib实现人脸识别(一)生成描述文件和标签文件的主要内容,如果未能解决你的问题,请参考以下文章
山东大学项目实训四——Face_Recognition 使用Opencv和Dlib实现基于视频的人脸识别