YOLOv7快速复现 demo演示YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
Posted CV-杨帆
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了YOLOv7快速复现 demo演示YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object相关的知识,希望对你有一定的参考价值。
2022年7月6日周三 YOLOv7发布
目录
0 相关资源
b站视频:https://www.bilibili.com/video/BV1VB4y1v7kV/
官网链接:https://github.com/WongKinYiu/yolov7
相关博客:
YOLOv7上线:无需预训练,5-160 FPS内超越所有目标检测器
【论文解读】YOLOR: 2021年YOLO系列目标检测的最强王者
Hugging Face:https://huggingface.co/spaces/akhaliq/yolov7
1 论文简叙
1.1 Title
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors
1.2 Abstract
YOLOv7 surpasses all known object detectors
in both speed and accuracy in the range from 5 FPS to 160 FPS and has the highest accuracy 56.8% AP among all known real-time object detectors with 30 FPS or higher on GPU V100.
YOLOv7-E6 object detector (56 FPS V100, 55.9% AP) outperforms both transformer-based detector SWINL Cascade-Mask R-CNN (9.2 FPS A100, 53.9% AP) by 509%
in speed and 2%
in accuracy,
and convolutionalbased detector ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) by 551%
in speed and 0.7%
AP in accuracy,
as well as YOLOv7 outperforms: YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, Deformable DETR, DINO-5scale-R50, ViT-Adapter-B and many other object detectors in speed and accuracy.
Moreover, we train YOLOv7 only on MS COCO dataset from scratch without using any other datasets or pre-trained weights. Source code is released in https:// github.com/WongKinYiu/yolov7.
2 Hugging Face
yolov7 Hugging Face :https://huggingface.co/spaces/akhaliq/yolov7
3 GPU平台
我使用的是极链AI云平台:https://cloud.videojj.com/auth/register?inviter=18452&activityChannel=student_invite
选择镜像:
4 yolov7安装
cd /home
git clone https://gitee.com/YFwinston/yolov7.git
cd yolov7
pip install -r requirements.txt
pip install opencv-python-headless==4.1.2.30
5 demo测试
注意:第一次运行,yolov7.pt的下载速度比较慢,可以先在本地下载,然后上传平台,
cd /home/yolov7
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/1.jpg
只要人的检测结果
cd /home/yolov7
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/1.jpg --classes 0
以上是关于YOLOv7快速复现 demo演示YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object的主要内容,如果未能解决你的问题,请参考以下文章
win10-cpu-Yolov7 windows10(cpu)上用yolov7跑视频demo
win10-cpu-Yolov7 windows10上安装yolov7 并且使用cpu跑demo
[软件工具][原创]yolov7快速训练助手使用教程傻瓜式训练不需要写代码配置参数