什么是无偏估计和有偏估计

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了什么是无偏估计和有偏估计相关的知识,希望对你有一定的参考价值。

参考技术A

有偏估计(biased estimate)是指由样本值求得的估计值与待估参数的真值之间有系统误差,其期望值不是待估参数的真值。

无偏估计是用样本统计量来估计总体参数时的一种无偏推断。估计量的数学期望等于被估计参数的真实值,则称此估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。

假设A市有10000名小学六年级的学生,他们进行一次考试,成绩服从1~100的均匀分布。1号学生考1分,2号学生考1.01分......10000号学生考100分。

那么,他们的平均分为(1+1.01+1.02+...+100)/10000=50.5,这个值是总体期望,但实际上我们并不能知道这个值,只能通过样本估计。

可以给A市88所小学打电话,让学校老师随机选取一名学生成绩报上来,这样就可以得到88名学生的成绩,这88名学生就是我们第一个随机选取的样本,我们算出平均值,记作。

然后再重新给A市88所小学打电话,重新随机选取88名学生的成绩,这是第二个随机样本。算出样本2的平均值,记作。

然后重复n遍,获得n个样本均值,你会发现样本均值的分布符合正态分布。我们就可以用最大似然估计或距估计求得这个正态分布的期望。

而样本平均数的期望(在这里就是均值),极其接近总体的期望。我们称之为无偏估计,一次抽样计算的平均值就说是总体均值的做法就是有偏估计(biased estimator)

扩展资料

(1)无偏估计有时并不一定存在。

(2)可估参数的无偏估计往往不唯一。统计学中,将存在无偏估计的参数称为可估参数,可估参数的无偏估计往往不唯一,而且只要不唯一,则即有无穷多个。一个参数往往有不止一个无偏估计。

(3)无偏估计不一定是好估计。

参考资料来源:百度百科-有偏估计

参考资料来源:百度百科-无偏估计

方差的无偏估计如何计算?

  我们常常被问到"方差的无偏估计如何计算?和有偏估计的区别是什么?",心想"哎呀,又忘了"。本篇回归问题本质,带你理解这些名词背后解决的实际问题。

一、基本概念

  解题第一步是理解题意,通过示例首先搞清楚以下几个概念。

  假如你想调研所在大学女生的身高,你站在厕所门口(女生一般爱上厕所^~^),随机去问n个女生(独立同分布),最后通过哪些数值来反映身高呢?一般我们都会使用均值。

  但如果在调研的时候,你发现有的女生特别高(猜测是校篮球队的),该样本并不能真实反映女生普遍身高,这就导致采集的样本存在异常数据,那么你可以通过方差来度量身高的差异。

  由于学校的全体女生身高的均值µ 和方差σ未知,这里通过采样计算得到的技术图片和 S2,都只是对已知分布中的未知参数的一个估计,这就是估计量。在估计时用到的样本均值和样本方差是用来描述数据特征的,被叫做是统计量。

  上面示例提到以下概念,严格定义如下:

  • 期望

    是指随机事件中随机变量和它出现概率的乘积的总和,反映了随机变量平均取值的大小,又称"均值"。

    E(X) = Σip(xi)xi

  • 方差

    是用来度量随机变量和其均值之间的偏离程度,方差越小,偏离程度越小。

    D(X) = E([X-E(X)]2)

  • 统计量

    已知样本集,由样本值计算的函数,被称为统计量,不含未知参数。比如样本平均值,样本方差,样本标准差等。

  • 估计量

    设总体样本的分布函数已知,参数未知。已知样本集,需要构造适当的统计量来估计未知参数的近似值,这被称为估计量。

二、那么问题来了

  以上示例中两个指标的计算方式如下:

  样本均值

             技术图片

  样本方差

技术图片

  为什么方差的计算分母是n-1,而不是n ?

  实际上示例中的统计量是对未知参数的估计,而估计量的选择是有评价标准的,以下是三种常见的评价指标,这里只考察估计量的无偏性。

三、估计量的评价标准

  1. 无偏性

  若估计量的数学期望存在,且期望等于未知参数,则称该估计量为参数的无偏估计量。

  估计量的无偏性是指对于某些样本值来说,得到的估计量和真值相比,有的偏大,有的偏小,但就其平均而言,偏差为0。估计量的期望和真值相差被称为系统误差,无偏估计实际上是指无系统误差。

  2. 有效性

  设有两个无偏估计量,都是真值的估计,其中方差小的估计量较方差大的更有效。

  估计量的有效性,是希望无偏估计量取值偏离真值的程度越小越好,所以以方差小的估计量更好。

  3. 相合性

  随着样本数无限增加,估计量依概率收敛于真值,则被称为相合估计量。

  以上两个标准都是以样本数固定为前提,我们希望随着样本的增加,估计量的值趋近于参数的真值。 

四、方差的无偏性

  由以上无偏性标准的定义可知,方差的无偏估计需要估计量的均值等于方差真值,当分母是n时,如下公式可见

  1. 公式推导

       技术图片

                技术图片

  又由于

      技术图片

技术图片

技术图片

  即:

技术图片

  2.通俗理解(自由度)

  计算估计量的样本需要独立同分布,由于分布参数未知,使用样本均值来计算样本方差时,样本均值是由各样本计算而来。假设样本容量为n,已知n-1个样本值,可由样本均值推断出最后一个样本取值,破坏了样本独立性,故该样本集的自由度为n-1,所以计算样本方差时样本数应该减去1。

 

 

参考:

https://www.zhihu.com/question/20099757

《概率论与数理统计》

 

 

以上是关于什么是无偏估计和有偏估计的主要内容,如果未能解决你的问题,请参考以下文章

n折交叉验证结果中的+-怎么算的? 标准差?有偏估计?无偏估计?

概率统计笔记:高斯分布の极大似然法,有偏&无偏估计

异方差的检验与修正

如何理解无偏估计?无偏估计有什么用?

偏最小二乘法的岭回归分析

什么是无偏估计?