bp算法在人工神经网络中的作用是啥?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bp算法在人工神经网络中的作用是啥?相关的知识,希望对你有一定的参考价值。
BP(Back Propagation)算法是一种常用的人工神经网络训练算法,是通过反向传播来调整神经网络权值的算法。在人工神经网络中,BP算法的作用是帮助神经网络对输入的数据进行学习,并通过学习来调整神经网络的权值,以使得神经网络能够较好地对未知数据进行预测。 参考技术ABP算法是由学习过程由信号的正向传播与误差的反向传播两个过程组成。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
虽然BP算法得到广泛的应用,但它也存在不足,其主要表现在训练过程不确定上,具体如下。
1,训练时间较长。对于某些特殊的问题,运行时间可能需要几个小时甚至更长,这主要是因为学习率太小所致,可以采用自适应的学习率加以改进。
2,完全不能训练。训练时由于权值调整过大使激活函数达到饱和,从而使网络权值的调节几乎停滞。为避免这种情况,一是选取较小的初始权值,二是采用较小的学习率。
3,易陷入局部极小值。BP算法可以使网络权值收敛到一个最终解,但它并不能保证所求为误差超平面的全局最优解,也可能是一个局部极小值。
这主要是因为BP算法所采用的是梯度下降法,训练是从某一起始点开始沿误差函数的斜面逐渐达到误差的最小值,故不同的起始点可能导致不同的极小值产生,即得到不同的最优解。如果训练结果未达到预定精度,常常采用多层网络和较多的神经元,以使训练结果的精度进一步提高,但与此同时也增加了网络的复杂性与训练时间。
4,“喜新厌旧”。训练过程中,学习新样本时有遗忘旧样本的趋势。
扩展资料:
BP算法最早由Werbos于1974年提出,1985年Rumelhart等人发展了该理论。BP网络采用有指导的学习方式,其学习包括以下4个过程。
1,组成输入模式由输入层经过隐含层向输出层的“模式顺传播”过程。
2,网络的期望输出与实际输出之差的误差信号由输出层经过隐含层逐层休整连接权的“误差逆传播”过程。
3,由“模式顺传播”与“误差逆传播”的反复进行的网络“记忆训练”过程。
4,网络趋向收敛即网络的总体误差趋向极小值的“学习收敛”过程。
参考资料来源:百度百科-BP算法
人工神经网络的分类 ann和bp是啥意思
参考技术A 人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等.目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等.ann:人工神经网络(Artificial Neural Networks)
bp:Back Propagation网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer).
以上是关于bp算法在人工神经网络中的作用是啥?的主要内容,如果未能解决你的问题,请参考以下文章