IOS 关键字self,super,copy, retain, assign , readonly , readwrite, nonatomic@synthesize@property@dyna

Posted huangyan1022

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了IOS 关键字self,super,copy, retain, assign , readonly , readwrite, nonatomic@synthesize@property@dyna相关的知识,希望对你有一定的参考价值。

  1. #synthesize关键字: 根据@property设置,自动生成成员变量相应的存取方法,从而可以使用点操作符来方便的存取该成员变量 。

  2. self 关键字 :类似于java中的this,是隐藏参数,指向当前调用方法的类。
  3. super 关键字 :调用父类的方法。

    self = [superinit]  这里不是判断self与[superinit]是否相等,而是判断是否可以成功初始化。[super init]:父类初始化成功的话,通过=给self,这样self成为一个非空对象,整个来说即非false(非NO)。

    #import 告诉预处理器,将头文件的内容包含到本文件中. OC 中的import 能保证头文件只会被包含一次 [email protected]关键字:声明一个Student类。@end 结束声明.
  4. 冒号:表示继承 后面跟的是父类.  
  5. NSObject是大多数对象都会用到的内存管理,和初始化框架,以及反射和类型操作. 相 当于Object。

    NS是NextSTEP缩写,表示这个函数来自Cocoa工具包。

    1. 声明全局变量 , 与C中一样。

    2. property关键字:设置成员变量的属性(有读/写,赋值assign,retain,copy ,以及对多线程的支持nonatomic)。

    3. 声明一个方法,格式是  –(返回值) 方法关键字1 : (参数类型)参数名 方法关键字2 : (参数类型)参数名 …… (在读方法的时候就可以先找方法关键字来确定参数)。

    - 减号是实例方法, + 是类方法

  6.   另一个初始化方法中调用已有的初始化方法  这种概念被称为Designated Initializer.

    5.  NSLog是OC中的标准输出, 附加输出当时日期, 时间, 应用程序名称 . 使用NSLog()输出任意对象的值时,都会使用%@格式说明。在使用这个说明符时,对象通过一个名为description的方法提供自己的NSLog()格式。 

    使用@property配合@synthesize可以让编译器自动实现getter/setter方法,使用的时候也很方便,可以直接使用“对象.属性”的方法调用;如果我们想要”对象.方法“的方式来调用一个方法并获取到方法的返回值,那就需要使用@property配合@dynamic了

    使用@dynamic关键字是告诉编译器由我们自己来实现访问方法。如果使用的是@synthesize,那么这个工作编译器就会帮你实现了。

    readonly此标记说明属性是只读的,默认的标记是读写,如果你指定了只读,在@implementation中只需要一个读取器。或者如果你使用@synthesize关键字,也是有读取器方法被解析。而且如果你试图使用点操作符为属性赋值,你将得到一个编译错误。

    readwrite此标记说明属性会被当成读写的,这也是默认属性。设置器和读取器都需要在@implementation中实现。如果使用@synthesize关键字,读取器和设置器都会被解析。

    nonatomic:非原子性访问,对属性赋值的时候不加锁,多线程并发访问会提高性能。如果不加此属性,则默认是两个访问方法都为原子型事务访问。

    atomic和nonatomic用来决定编译器生成的getter和setter是否为原子操作。

            atomic
                    设置成员变量的@property属性时,默认为atomic,提供多线程安全。
                    在多线程环境下,原子操作是必要的,否则有可能引起错误的结果。加了atomic,setter函数会变成下面这样:
                            {lock}
                                    if (property != newValue) { 
                                            [property release]; 
                                            property = [newValue retain]; 
                                    }
                            {unlock}
            nonatomic
            禁止多线程,变量保护,提高性能。
            atomic是Objc使用的一种线程保护技术,基本上来讲,是防止在写未完成的时候被另外一个线程读取,造成数据错误。而这种机制是耗费系统资源的,所以在iPhone这种小型设备上,如果没有使用多线程间的通讯编程,那么nonatomic是一个非常好的选择。
            指出访问器不是原子操作,而默认地,访问器是原子操作。这也就是说,在多线程环境下,解析的访问器提供一个对属性的安全访问,从获取器得到的返回值或者通过设置器设置的值可以一次完成,即便是别的线程也正在对其进行访问。如果你不指定 nonatomic ,在自己管理内存的环境中,解析的访问器保留并自动释放返回的值,如果指定了 nonatomic ,那么访问器只是简单地返回这个值。

    assign: 简单赋值,不更改索引计数
    对基础数据类型 (例如NSInteger,CGFloat)和C数据类型(int, float, double, char, 等)       适用简单数据类型

    此标记说明设置器直接进行赋值,这也是默认值。在使用垃圾收集的应用程序中,如果你要一个属性使用assign,且这个类符合NSCopying协             议,你就要明确指出这个标记,而不是简单地使用默认值,否则的话,你将得到一个编译警告。这再次向编译器说明你确实需要赋值,即使它是           可拷贝的。

    copy:建立一个索引计数为1的对象,然后释放旧对象                对NSString

     对NSString 它指出,在赋值时使用传入值的一份拷贝。拷贝工作由copy方法执行,此属性只对那些实行了NSCopying协议的对象类型有效。更深入的讨论,请参考“复制”部分。

    retain:释放旧的对象,将旧对象的值赋予输入对象,再提高输入对象的索引计数为1
    对其他NSObject和其子类

    对参数进行release旧值,再retain新值
            指定retain会在赋值时唤醒传入值的retain消息。此属性只能用于Objective-C对象类型,而不能用于Core Foundation对象。(原因很明显,retain会增加对象的引用计数,而基本数据类型或者Core Foundation对象都没有引用计数——译者注)。
            注意: 把对象添加到数组中时,引用计数将增加对象的引用次数+1。

    retain的实际语法为:
    - (void)setName:(NSString *)newName { 
        if (name != newName) { 
           [name release]; 
           name = [newName retain]; 
           // name’s retain count has been bumped up by 1 
        } 
    }

    copy与retain:

    Copy其实是建立了一个相同的对象,而retain不是:
    比如一个NSString对象,地址为0×1111,内容为@”STR”
    Copy到另外一个NSString之后,地址为0×2222,内容相同,新的对象retain为1,旧有对象没有变化
    retain到另外一个NSString之后,地址相同(建立一个指针,指针拷贝),内容当然相同,这个对象的retain值+1
    也就是说,retain是指针拷贝,copy是内容拷贝。哇,比想象的简单多了…

    retain的set方法应该是浅复制,copy的set方法应该是深复制了

    copy另一个用法:
    copy是内容的拷贝  ,对于像NSString,的确是这样.
    但是,如果是copy的是一个NSArray呢?比如, 
    NSArray *array = [NSArray arrayWithObjects:@"hello",@"world",@"baby"];
    NSArray *array2 = [array copy]; 
    这个时候,,系统的确是为array2开辟了一块内存空间,但是我们要认识到的是,array2中的每个元素,,只是copy了指向array中相对应元素的指针.这便是所谓的"浅复制".

    assign与retain:

    1. 接触过C,那么假设你用malloc分配了一块内存,并且把它的地址赋值给了指针a,后来你希望指针b也共享这块内存,于是你又把a赋值给(assign)了b。此时a和b指向同一块内存,请问当a不再需要这块内存,能否直接释放它?答案是否定的,因为a并不知道b是否还在使用这块内存,如果a释放了,那么b在使用这块内存的时候会引起程序crash掉。

    2. 了解到1中assign的问题,那么如何解决?最简单的一个方法就是使用引用计数(reference counting),还是上面的那个例子,我们给那块内存设一个引用计数,当内存被分配并且赋值给a时,引用计数是1。当把a赋值给b时引用计数增加到2。这时如果a不再使用这块内存,它只需要把引用计数减1,表明自己不再拥有这块内存。b不再使用这块内存时也把引用计数减1。当引用计数变为0的时候,代表该内存不再被任何指针所引用,系统可以把它直接释放掉。

     

    总结:上面两点其实就是assign和retain的区别,assign就是直接赋值,从而可能引起1中的问题,当数据为int, float等原生类型时,可以使用assign。retain就如2中所述,使用了引用计数,retain引起引用计数加1, release引起引用计数减1,当引用计数为0时,dealloc函数被调用,内存被回收。

     

    NSString *pt = [[NSString alloc] initWithString:@"abc"];
    上面一段代码会执行以下两个动作
    1 在堆上分配一段内存用来存储@"abc"  比如:内存地址为:0X1111 内容为 "abc"
    2 在栈上分配一段内存用来存储pt  比如:地址为:0Xaaaa 内容自然为0X1111  
    下面分别看下assign retain copy
    assign的情况:NSString *newPt = [pt assing];  
    此时newPt和pt完全相同 地址都是0Xaaaa  内容为0X1111  即newPt只是pt的别名,对任何一个操作就等于对另一个操作。 因此retainCount不需要增加。
    retain的情况:NSString *newPt = [pt retain];  
    此时newPt的地址不再为0Xaaaa,可能为0Xaabb 但是内容依然为0X1111。 因此newPt 和 pt 都可以管理"abc"所在的内存。因此 retainCount需要增加1  
    copy的情况:NSString *newPt = [pt copy];
    此时会在堆上重新开辟一段内存存放@"abc" 比如0X1122 内容为@"abc 同时会在栈上为newPt分配空间 比如地址:0Xaacc 内容为0X1122 因此retainCount增加1供newPt来管理0X1122这段内存

     

    //——————————————————————————
    看了这么多也许大家有点晕, 现在进行实际的代码演示:

    @property (nonatomic, assign) int number;
    这里定义了一个int类型的属性, 那么这个int是简单数据类型,本身可以认为就是原子访问,所以用nonatomic,  不需要进行引用计数,所以用assign。 适用于所有简单数据类型。

    @property (nonatomic, copy) NSString * myString;
    这里定义了一个NSString类型的属性,不需要原子操作,所以用nonatomic.
    为什么需要copy,而不是retain呢! 因为如果对myString赋值原字符串是一个可变的字符串(NSMutableString)对象的话,用retain的话,当原字符串改变的时候你的myString属性也会跟着变掉。我想你不希望看到这个现象。 实际上博主测试, 如果原来的字符串是NSString的话,也只是retain一下,并不会copy副本

    @property (nonatomic, retain) UIView * myView;
    这里定义了一个UIView类型的属性,不需要原子操作,所以用nonatomic.
    当对myView 赋值的时候原来的UIView对象retainCount会加1

    //接口文件
    @interface MyClass : NSObject
    @property (nonatomic, assign)   int              number;
    @property (nonatomic, copy)   NSString  * myString;
    @property (nonatomic, retain) UIView    * myView;
    @end

    //实现文件
    @implementation MyClass
    @synthesize number;
    @synthesize myString;
    @synthesize myView;

    //释放内存
    -(void) dealloc
    {
    [myString release];  //copy的属性需要release;
    [myView release];    //retain的属性需要release;

    [super dealloc]; //传回父对象
    }

    @end

    假如你有一段代码创建了一个MyClass对象

    MyClass * instance  = [MyClass alloc] init];

    //number赋值,没什么可说的, 简单数据类型就这样
    instance.number = 1;

    //创建一个可变字符串
    NSMutableString * string = [NSMutableString stringWithString:@"hello"];

    instance.myString = string;                   //对myString赋值

    [string appendString:@" world!"];      //往string追加文本

    NSLog(@”%@”,string);                        //此处string已经改变, 输出为 “hello world!”

    NSLog(@”%@”,instance.myString);   //输出myString,你会发现此处输出仍然为 “hello” 因为 myString在string改变之前已经copy了一份副本

    UIView * view = [[UIView alloc] init];
    NSLog(@”retainCount = %d”,view.retainCount);
    //输出view的引用计数, 此时为1

    instance.myView = view; //对myView属性赋值

    NSLog(@”retainCount = %d”,view.retainCount);
    //再次输出view的引用计数, 此时为2,因为myView对view进行了一次retain。

    [view release];
    //此处虽然view被release释放掉了,但myView对view进行了一次retain,那么myView保留的UIView的对象指针仍然有效。

    [instance release] ;













































以上是关于IOS 关键字self,super,copy, retain, assign , readonly , readwrite, nonatomic@synthesize@property@dyna的主要内容,如果未能解决你的问题,请参考以下文章

iOS中 类方法和实例方法及self和super

iOS self 和 super 学习

Super关键字

python中super关键字的用法

self, super理解

iOS之NSString类型为什么要用copy修饰