大数据:Spark Standalone 集群调度如何创建分配Executors的资源
Posted raintungli
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据:Spark Standalone 集群调度如何创建分配Executors的资源相关的知识,希望对你有一定的参考价值。
Standalone 的整体架构
在Spark集群中的3个角色Client, Master, Worker, 下面的图是Client Submit 一个任务的流程图:
完整的流程:Driver 提交任务给Master, 由Master节点根据任务的参数对进行Worker的Executor的分配,Worker节点获取到具体的分配信息启动executor 的子进程
Master分配Executor的策略
Master 接收到从Client发送的RegiterApplication 的消息后,开始进行worker资源的分配和调度
1. 寻找有效的Worker
val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
.filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB &&
worker.coresFree >= coresPerExecutor.getOrElse(1))
.sortBy(_.coresFree).reverse
在worker列表中,寻找有效的worker
A. 剩余内存大于单个Executor需要的内存
B. 剩余的内核数大于单个Executor所需的内核数
在Worker的分配中剩余的内核最多的(最空闲)的Worker,优先分配Executor
2. 分配Executor
Executor 和核数的关系? 可以简单的理解为进程和线程的关系,所以在分配一个新Executor的时候不仅要考虑核数同时还需要考虑内存是否足够。
几个控制参数
a. 每个executor的核数
当没有设置executor的核数
- 默认认为每个executor的核数是1
- 一个Worker上只能分配一个Executor(在这种情况下,一个Executor可以启动多个cores直到Worker的最大能分配的核数)
b. 每个Executor的需要的内存数
d. Application 所需要的内核数(total-executor-cores)
每个运行的Application所设置的最大内核数,如果没有设置,取默认的内核数
如何判断能在Worker上分配Executor?
def canLaunchExecutor(pos: Int): Boolean =
val keepScheduling = coresToAssign >= minCoresPerExecutor
val enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor
// If we allow multiple executors per worker, then we can always launch new executors.
// Otherwise, if there is already an executor on this worker, just give it more cores.
val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutors(pos) == 0
if (launchingNewExecutor)
val assignedMemory = assignedExecutors(pos) * memoryPerExecutor
val enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutor
val underLimit = assignedExecutors.sum + app.executors.size < app.executorLimit
keepScheduling && enoughCores && enoughMemory && underLimit
else
// We're adding cores to an existing executor, so no need
// to check memory and executor limits
keepScheduling && enoughCores
- Worker 上剩余的核数大于一个Executor的核数
- Worker 上如果允许创建新的Executor,需要检查Worker上的内存是否足够Executor,和创建的Executor的总数否超过App对Executor的大小限制
EX: 设置
executor-cores=5
但如果Worker里剩余的core数只有4,这时候这个Executor 是无法在这个Worker上分配成功的
如何在Worker上均衡分配Executor
在Spark上通过轮训的在所有有效的Worker列表(在前面1里已经谈过如何创建空闲的worker列表)里创建Executor,每次轮训的在每个Worker上分配一个executor的核数(一个executor),直到分配完这个应用所需要的所有核数。
Master.scala
private def scheduleExecutorsOnWorkers(
app: ApplicationInfo,
usableWorkers: Array[WorkerInfo],
spreadOutApps: Boolean): Array[Int] =
val coresPerExecutor = app.desc.coresPerExecutor
val minCoresPerExecutor = coresPerExecutor.getOrElse(1)
val oneExecutorPerWorker = coresPerExecutor.isEmpty
val memoryPerExecutor = app.desc.memoryPerExecutorMB
val numUsable = usableWorkers.length
val assignedCores = new Array[Int](numUsable) // Number of cores to give to each worker
val assignedExecutors = new Array[Int](numUsable) // Number of new executors on each worker
var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)
。。。。。。。。。
// Keep launching executors until no more workers can accommodate any
// more executors, or if we have reached this application's limits
var freeWorkers = (0 until numUsable).filter(canLaunchExecutor)
while (freeWorkers.nonEmpty)
freeWorkers.foreach pos =>
var keepScheduling = true
while (keepScheduling && canLaunchExecutor(pos))
coresToAssign -= minCoresPerExecutor
assignedCores(pos) += minCoresPerExecutor
// If we are launching one executor per worker, then every iteration assigns 1 core
// to the executor. Otherwise, every iteration assigns cores to a new executor.
if (oneExecutorPerWorker)
assignedExecutors(pos) = 1
else
assignedExecutors(pos) += 1
// Spreading out an application means spreading out its executors across as
// many workers as possible. If we are not spreading out, then we should keep
// scheduling executors on this worker until we use all of its resources.
// Otherwise, just move on to the next worker.
if (spreadOutApps)
keepScheduling = false
freeWorkers = freeWorkers.filter(canLaunchExecutor)
assignedCores
assignedCores是每个workers的被分配的核数的列表,为何不是分配的Executor数目呢?
还记得前面的参数每个Executor的核数的配置么?如果没有配置,就是默认为每个Worker只起一个Executor, 如果此时返回的是Executor的数目列表的话,在这种情况下只能返回1,1...的集合,根本无法知道每个Worker的分配的核数。
但反过来却很容易知道每个Work要创建的Executor的数目,只要 cores.sum/coresPerExecutor 就可以了
3. Worker上申请资源
private def allocateWorkerResourceToExecutors(
app: ApplicationInfo,
assignedCores: Int,
coresPerExecutor: Option[Int],
worker: WorkerInfo): Unit =
// If the number of cores per executor is specified, we divide the cores assigned
// to this worker evenly among the executors with no remainder.
// Otherwise, we launch a single executor that grabs all the assignedCores on this worker.
val numExecutors = coresPerExecutor.map assignedCores / _ .getOrElse(1)
val coresToAssign = coresPerExecutor.getOrElse(assignedCores)
for (i <- 1 to numExecutors)
val exec = app.addExecutor(worker, coresToAssign)
launchExecutor(worker, exec)
app.state = ApplicationState.RUNNING
基于2部分的Executor的分配原则,生成Executor的ID号,向Worker轮训的发送每个Executor的LaunchExecutor消息,同时也汇报给Driver ExecutedAdded的消息
private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc): Unit =
logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
worker.addExecutor(exec)
worker.endpoint.send(LaunchExecutor(masterUrl,
exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory))
exec.application.driver.send(
ExecutorAdded(exec.id, worker.id, worker.hostPort, exec.cores, exec.memory))
Driver对ExecutedAdded消息的处理
case ExecutorAdded(id: Int, workerId: String, hostPort: String, cores: Int, memory: Int) =>
val fullId = appId + "/" + id
logInfo("Executor added: %s on %s (%s) with %d cores".format(fullId, workerId, hostPort,
cores))
listener.executorAdded(fullId, workerId, hostPort, cores, memory)
在listener处理的函数里,只是简单的记录了日志
override def executorAdded(fullId: String, workerId: String, hostPort: String, cores: Int,
memory: Int)
logInfo("Granted executor ID %s on hostPort %s with %d cores, %s RAM".format(
fullId, hostPort, cores, Utils.megabytesToString(memory)))
4. 资源申请管理
虽然我们都在谈论Executor,但实际上核心数才是关键,而Worker的资源也是由core和内存来决定是否能够在上申请成功,如果Worker上的空闲核心数不够申请一个Executor的核心数时候,这个Worker会被忽略。在Master上会有一个数组统计依然存活的Application
private val waitingApps = new ArrayBuffer[ApplicationInfo]
在启动ExecutorsOnWorkers函数里
private def startExecutorsOnWorkers(): Unit =
// Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app
// in the queue, then the second app, etc.
for (app <- waitingApps if app.coresLeft > 0)
.....
没有运行完的application都会被加入到等待队列里,直到application运行结束,才会从队列中被移除。
如果没有完全分配完core的application(比如application设置了总共需要的cores,但实际上资源不够只分配了一部分Cores),都会继续再次优先被分配资源,因为在waitingApps的队列的前面,后续的Application资源分配遵循FIFO的策略,等待前面的Application分配资源结束,才能获取到分配资源的权利。
注意:
这里并不是代表没分配完Core的Application就不开始运行了,Application的最小单位是Executor, 在前面的代码里也看到在分配的时候,只要Worker能被分配出Executor,就会对Worker发送LaunchExecutor 消息,并不需要等完整的分配完下面的参数
total-executor-cores=10
在Spark理念中当资源不足的时候,先分配给Application一部分的Executor,让任务运行了在说,后续如果有Worker资源被释放,继续对该Application从worker中申请Executor,直到资源申请完,或者该Application运行完,而所有的Worker的状态、资源的状况,均保存在Master里,由Master来全局调度分配。
设置过大的Total-Executor-Cores会带来很大的风险
Master会不停的持续的分配Worker资源直到最大的Core的数目为止
后续:
Worker收到LaunchExecutor的消息后,会启动Executor的子进程,Executor会发消息RegisterExecutor给Application,通知Application所分配的Executor启动了
Executor和Core?
在Worker启动Executor子进程的时候,并没有启动对应的Core数目的线程
private def fetchAndRunExecutor()
对Worker来说, Core是控制worker的内核数的,worker并不关心executor, 只关心自己的所剩的内核数,Spark这种CPU密集型的运算框架,Worker是运算的子节点,关心core的数目才是核心
那么Core数对Executor进程的意义何在?
在Spark中在Application的任务中,同时还有task,task的任务数据的拆分是基于参数和Executor汇报的Core数量,而Task的数量会决定最后在Executor中启动的运行Task的线程数,关于Task后续会讲到。
以上是关于大数据:Spark Standalone 集群调度如何创建分配Executors的资源的主要内容,如果未能解决你的问题,请参考以下文章
大数据:Spark Standalone 集群调度多Master节点的可用性
大数据:Spark Standalone 集群调度从远程调试开始说application创建
大数据平台实战(05)深入Spark Cluster集群模式YARN vs Mesos vs Standalone vs K8s