Python怎么检验数据分布

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python怎么检验数据分布相关的知识,希望对你有一定的参考价值。

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import numpy as np
import pydotplus
import csv
import scipy.stats as ss
game =[ ]#game是一个列表 ,你自己弄一个自己的数据列表即可
x = np.array(game)#x要处理成这个样子:
N=30
counts, bins = np.histogram(x, bins=N)
bin_width = bins[1]-bins[0]
total_count = float(sum(counts))
f, ax = plt.subplots(1, 1)
f.suptitle('query_uri')
ax.bar(bins[:-1]+bin_width/2., counts, align='center', width=.85*bin_width)
ax.grid('on')
def fit_pdf(x, name='lognorm', color='r'):
dist = getattr(ss, name) # params = shape, loc, scale
# dist = ss.gamma # 3 params
params = dist.fit(x, loc=0) # 1-day lag minimum for shipping
y = dist.pdf(bins, *params)*total_count*bin_width
sqerror_sum = np.log(sum(ci*(yi - ci)**2. for (ci, yi) in zip(counts, y)))
ax.plot(bins, y, color, lw=3, alpha=0.6, label='%s err=%3.2f' % (name, sqerror_sum))
return y
colors = ['r-', 'g-', 'r:', 'g:']
for name, color in zip(['exponweib', 't', 'gamma'], colors): # 'lognorm', 'erlang', 'chi2', 'weibull_min',
#分号后面的分布也可以打进去 线条颜色自己加
y = fit_pdf(x, name=name, color=color)
ax.legend(loc='best', frameon=False)
plt.savefig('G:\weibull216.png')
plt.show()
我之前也是考虑这个问题,这些代码能实现'exponweib', 't', 'gamma', 'lognorm', 'erlang', 'chi2', 'weibull_min',的拟合。只要自己输入game,game为一组数据即可。
参考技术A 基数排序?

Python怎么检验数据的正态分布

在对数据建模前,很多时候我们需要对数据做正态性检验,进而通过检验结果确定下一步的分析方案。下面介绍 Python 中常用的几种正态性检验方法:
scipy.stats.kstest

kstest 是一个很强大的检验模块,除了正态性检验,还能检验 scipy.stats 中的其他数据分布类型

kstest(rvs, cdf, args=(), N=20, alternative=’two_sided’, mode=’approx’, **kwds)

对于正态性检验,我们只需要手动设置三个参数即可:

rvs:待检验的数据
cdf:检验方法,这里我们设置为‘norm’,即正态性检验
alternative:默认为双尾检验,可以设置为‘less’或‘greater’作单尾检验
>>> import numpy as np
>>> from scipy.stats import kstest
>>> x = np.linspace(-15, 15, 9)
>>> kstest(x, ‘norm‘)
(0.44435602715924361, 0.038850142705171065)

输出结果中第一个为统计数,第二个为P值

具体见官方文档 scipy.stats.kstest
scipy.stats.shapiro

与 kstest 不同,shapiro 是专门用来做正态性检验的模块
注意:shapiro 不适合做样本数>5000的正态性检验,检验结果的P值可能不准确

scipy.stats.shapiro(x, a=None, reta=False)

一般我们只用 x 参数就行,x 即待检验的数据

>>> from scipy import stats
>>> np.random.seed(12345678)
>>> x = stats.norm.rvs(loc=5, scale=3, size=100)
>>> stats.shapiro(x)
(0.9772805571556091, 0.08144091814756393)

输出结果中第一个为统计数,第二个为P值

具体见官方文档 scipy.stats.shapiro
scipy.stats.normaltest

normaltest 也是专门做正态性检验的模块

scipy.stats.normaltest(a, axis=0, nan_policy=’propagate’)

这里的三个参数都有必要看一下:

a:待检验的数据
axis:默认为0,表示在0轴上检验,即对数据的每一行做正态性检验,我们可以设置为 axis=None 来对整个数据做检验
nan_policy:当输入的数据中有空值时的处理办法。默认为 ‘propagate’,返回空值;设置为 ‘raise’ 时,抛出错误;设置为 ‘omit’ 时,在计算中忽略空值。
>>> import numpy as np
>>> from scipy.stats import normaltest
>>> x = np.random.randn(10, 20)
>>> normaltest(x, axis=None)
>>> NormaltestResult(statistic=0.3582062593239369, pvalue=0.83601967652440512)

输出结果中第一个为统计数,第二个为P值

具体见官方文档 scipy.stats.normaltest
scipy.stats.anderson

anderson 是修改版的 kstest,说是增强版也不为过。也可以做多种分布的检验,默认的检验时正态性检验。

scipy.stats.anderson(x, dist=’norm’)

参数这里就不多说了,但对输出结果说明一下:
anderson 有三个输出值,第一个为统计数,第二个为评判值,第三个为显著性水平, 评判值与显著性水平对应
对于正态性检验,显著性水平为:15%, 10%, 5%, 2.5%, 1%

import numpy as np
from scipy.stats import anderson
x = np.linspace(-15, 15, 9)
anderson(x)
AndersonResult(statistic=0.13676646631470213, critical_values=array([ 0.507, 0.578, 0.693, 0.808, 0.961]), significance_level=array([ 15. , 10. , 5. , 2.5, 1. ]))




转自:https://blog.csdn.net/QimaoRyan/article/details/72861387 

以上是关于Python怎么检验数据分布的主要内容,如果未能解决你的问题,请参考以下文章

Python怎么检验数据的正态分布

python:5种正态性检验方法

怎么检验数据是不是服从正态分布

python曼·惠特尼U检验(Mann-Whitney U Test)

帮忙看下spss的KS检验正态分布和配对T检验结果

着急用!如何检验一组数据是不是服从正态分布呀?在线等