深度学习系列33:统一图像视频文字的女娲模型

Posted IE06

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习系列33:统一图像视频文字的女娲模型相关的知识,希望对你有一定的参考价值。

1. 输入

文字:使用使用BPE进行分词,tokenizer.encode(txt_str)转化为向量,然后embedding为 R 1 × 1 × s × d R^1\\times1\\times s \\times d R1×1×s×d
图片:输入 I ∈ R H × W × C I\\in R^H\\times W\\times C IRH×W×C,通过VQ-VAE或者VQ-GAN中的生成器E和离散编码器B转化并摊平为 R h × w × 1 × d R^h\\times w\\times 1 \\times d Rh×w×1×d
视频:逐帧编码图片,并合并为 R h × w × s × d R^h\\times w\\times s \\times d Rh×w×s×d
草图:输入 I ∈ R H × W × C I\\in R^H\\times W\\times C IRH×W×C,其中C是分割类型编号,同样通过VQ-GAN生成 R h × w × 1 × d R^h\\times w\\times 1 \\times d Rh×w×1×d

注意这里对每一个维度j都进行离散化,而不是整体进行离散化:

注意 z q z_q zq里的每一个分量都是下标,即 z q ∈ 0 , 1 , . . . , N − 1 h × w z_q\\in \\0,1,...,N-1\\^h\\times w zq0,1,...,N1h×w
下图说明了两类任务的流程:

text和sketch等C需要然后经过3D编码模块,然后再进行3D解码生成Y;
图像和视频等X补全,则是直接经过3D解码器生成Y。
Y再通过VQ-GAN或者VA-VAE的解码器生成图像/视频。

2. 编码解码模块

使用了3DNA模块进行编码和解码。3DNA模块是一个使用了注意力的模块:


在C的条件下生成目标Y,我们通用的编解码过程是:首先使用L层3DNA模块生成 C ( L ) C^(L) C(L):

然后使用L层3DNA模块生成 Y ( L ) Y^(L) Y(L)

三个任务(Text-to-Image (T2I), Video Prediction (V2V) and Text-to-Video (T2V))同时进行训练,目标函数使用交叉熵为:

3. 代码解析

参考这篇实现:https://github.com/lucidrains/nuwa-pytorch
安装:pip install nuwa-pytorch

3.1 总流程

1)训练图像表示模块,使用VQGAN_VAE得到图像编码器

import torch
from nuwa_pytorch import VQGanVAE

vae = VQGanVAE()
imgs = torch.randn(10, 3, 256, 256)
loss = vae(imgs, return_loss = True)
loss.backward()

# and the discriminator ...
discr_loss = vae(imgs, return_discr_loss = True)
discr_loss.backward()

# do above for many steps
# return reconstructed images and make sure they look ok
recon_imgs = vae(imgs)

将训练好的vae带入nuwa模块:

nuwa = NUWA().cuda()
text = torch.randint(0, 20000, (1, 256)).cuda()
video = torch.randn(1, 10, 3, 256, 256).cuda() # (batch, frames, channels, height, width)

loss = nuwa(
    text = text,
    video = video,
    return_loss = True  # set this to True, only for training, to return cross entropy loss
)
loss.backward()
# do above with as much data as possible

# then you can generate a video from text
video = nuwa.generate(text = text, num_frames = 5) # (1, 5, 3, 256, 256)

3.2 VQGAN_VAE模块

VQGanAttention可作为可选层,计算公式为:

其中B用ContinuousPositionBias得到。我们来看下对应的代码:

class VQGanAttention(nn.Module):
    def __init__(
        self,
        *,
        dim,
        dim_head = 64,
        heads = 8,
        dropout = 0.
    ):
        super().__init__()
        self.heads = heads
        self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * math.log(0.01))
        inner_dim = heads * dim_head

        self.dropout = nn.Dropout(dropout)
        self.post_norm = LayerNormChan(dim)

        self.cpb = ContinuousPositionBias(dim = dim // 4, heads = heads)
        self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
        self.to_out = nn.Conv2d(inner_dim, dim, 1)

    def forward(self, x):
        h = self.heads
        height, width, residual = *x.shape[-2:], x.clone()

        q, k, v = self.to_qkv(x).chunk(3, dim = 1) 
        q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = h), (q, k, v))
        q, k = map(l2norm, (q, k)) # q,k 正则化

        sim = einsum('b h c i, b h c j -> b h i j', q, k) * self.scale.exp() # qk/sqrt(d)
        sim = self.cpb(sim) # 加上B
        attn = stable_softmax(sim, dim = -1) # softmax
        attn = self.dropout(attn)
        out = einsum('b h i j, b h c j -> b h c i', attn, v) # 乘以v
        out = rearrange(out, 'b h c (x y) -> b (h c) x y', x = height, y = width)
        out = self.to_out(out) # 卷积

        return self.post_norm(out) + residual

接着来看下整体的网络结构:

append = lambda arr, t: arr.append(t)
prepend = lambda arr, t: arr.insert(0, t)

for layer_index, (dim_in, dim_out), layer_num_resnet_blocks, layer_use_attn in zip(range(num_layers), dim_pairs, num_resnet_blocks, use_attn):
    # 堆叠卷积层或者上采样层
    append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu()))
    prepend(self.decoders, nn.Sequential(nn.Upsample(scale_factor = 2, mode = 'bilinear', align_corners = False), nn.Conv2d(dim_out, dim_in, 3, padding = 1), leaky_relu()))
    
	# 加入注意力模块
    if layer_use_attn:
        prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))

    for _ in range(layer_num_resnet_blocks):
    	# 加入残差
        append(self.encoders, ResBlock(dim_out, groups = resnet_groups))
        prepend(self.decoders, GLUResBlock(dim_out, groups = resnet_groups))

    if layer_use_attn:
        append(self.encoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout))

prepend(self.encoders, nn.Conv2d(channels, dim, first_conv_kernel_size, padding = first_conv_kernel_size // 2))
append(self.decoders, nn.Conv2d(dim, channels, 1))

接着看一下forward函数:

def forward():
        fmap, indices, commit_loss = self.encode(img)
        fmap = self.decode(fmap)
        if return_discr_loss: # 训练discriminator时
            loss = self.discr_loss(fmap_discr_logits, img_discr_logits)
            return loss

        # reconstruction loss
        recon_loss = self.recon_loss_fn(fmap, img)

        # perceptual loss
        img_vgg_feats = self.vgg(img_vgg_input)
        recon_vgg_feats = self.vgg(fmap_vgg_input)
        perceptual_loss = F.mse_loss(img_vgg_feats, recon_vgg_feats)

        # generator loss
        gen_loss = self.gen_loss(self.discr(fmap))

        # combine losses
        loss = recon_loss + perceptual_loss + commit_loss + adaptive_weight * gen_loss

        return loss

另外包含图片/视频与codebook转换的函数

def codebook_indices_to_video(self, indices):
        b = indices.shape[0]
        codes = self.codebook[indices]
        codes = rearrange(codes, 'b (f h w) d -> (b f) d h w', h = self.fmap_size, w = self.fmap_size)
        video = self.decode(codes)
        return rearrange(video, '(b f) ... -> b f ...', b = b)

def get_video_indices(self, video):
        b, f, _, h, w = video.shape
        images = rearrange(video, 'b f ... -> (b f) ...')
        _, indices, _ = self.encode(images) # 使用codebook进行编码
        return rearrange(indices, '(b f) ... -> b f ...', b = b)

3.3 主模块

先来看主函数

class NUWA(nn.Module):
	def forward():
        frame_embeddings = self.image_embedding(frame_indices_input)
        frame_embeddings = self.video_transformer(
            frame_embeddings,
            context = text_embeds,
            context_mask = text_mask
        )

        logits = self.to_logits(frame_embeddings)
        loss = F.cross_entropy(rearrange(logits, 'b n c -> b c n'), frame_indices)
        return loss

再来看文字输入模块:

def embed_text(self, text, mask = None):
	# 使用一个embedding层,text_num_tokens = 49408
    text_embedding = Embedding(text_num_tokens, dim, frac_gradient = embed_gradient_frac)
    tokens = text_embedding(text)

	# 位置编码
    if exists(self.text_abs_pos_emb):
        pos_emb = self.text_abs_pos_emb(torch.arange(seq_len, device = device))
        tokens = tokens + rearrange(pos_emb, 'n d -> 1 n d')

    rotary_pos_emb = None
    if exists(self.text_rotary_pos_emb):
        rotary_pos_emb = self.text_rotary_pos_emb(seq_len, device = device)

	# 加上一个transformer
    return self.text_transformer(
        tokens,
        mask = mask,
        rotary_pos_emb = rotary_pos_emb
    )

以上是关于深度学习系列33:统一图像视频文字的女娲模型的主要内容,如果未能解决你的问题,请参考以下文章

新视觉合成模型 Nüwa(女娲),文字生成图像视频,8类任务一个模型搞定

根据文字描述就能生成视频!微软又一开源神器,代号女娲

根据文字描述就能生成视频!微软又一开源神器,代号女娲

深度学习系列30:BART模型

OCR技术系列之四基于深度学习的文字识别(3755个汉字)

一个模型通杀8大视觉任务,一句话生成图像视频P图视频处理...都能行 | MSRA&北大出品...