Python3 - Loguru 相见恨晚的输出日志工具
Posted 韩俊强
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python3 - Loguru 相见恨晚的输出日志工具相关的知识,希望对你有一定的参考价值。
文章目录
一、前言
Python logging 模块定义了为应用程序和库实现灵活的事件日志记录的函数和类。
程序开发过程中,很多程序都有记录日志的需求,并且日志包含的信息有正常的程序访问日志还可能有错误、警告等信息输出,Python 的 logging 模块提供了标准的日志接口,可以通过它存储各种格式的日志,日志记录提供了一组便利功能,用于简单的日志记录用法。
使用 Python Logging 模块的主要好处是所有 Python 模块都可以参与日志记录Logging 模块提供了大量具有灵活性的功能。
为什么要使用loguru?
简单且方便的帮助我们输出需要的日志信息:
使用 Python 来写程序或者脚本的话,常常遇到的问题就是需要对日志进行删除。一方面可以帮助我们在程序出问题的时候排除问题,二来可以帮助我们记录需要关注的信息。
但是,使用自带自带的 logging 模块的话,则需要我们进行不同的初始化等相关工作。对应不熟悉该模块的同学来说,还是有些费劲的,比如需要配置 Handler/Formatter 等。 随着业务的复杂度提升, 对日志收集有着更高的要求, 例如: 日志分类, 文件存储, 异步写入, 自定义类型等等
loguru 是一个 Python 简易且强大的第三方日志记录库,该库旨在通过添加一系列有用的功能来解决标准记录器的注意事项,从而减少 Python 日志记录的痛苦。
二、优雅的使用loguru
1. 安装loguru
pip install loguru
2.功能特性介绍
有很多优点,以下列举了其中比较重要的几点:
- 开箱即用,无需准备
- 无需初始化,导入函数即可使用
- 更容易的文件日志记录与转存/保留/压缩方式
- 更优雅的字符串格式化输出
- 可以在线程或主线程中捕获异常
- 可以设置不同级别的日志记录样式
- 支持异步,且线程和多进程安全
- 支持惰性计算
- 适用于脚本和库
- 完全兼容标准日志记录
- 更好的日期时间处理
3. 开箱即用,无需准备
from loguru import logger
logger.debug("That's it, beautiful and simple logging!")
无需初始化,导入函数即可使用, 那么你肯定要问, 如何解决一下问题?
- 如何添加处理程序(handler)呢?
- 如何设置日志格式(logs formatting)呢?
- 如何过滤消息(filter messages)呢?
- 如何如何设置级别(log level)呢?
# add
logger.add(sys.stderr, \\
format="time level message",\\
filter="my_module",\\
level="INFO")
是不是很easy~
4. 更容易的文件日志记录与转存/保留/压缩方式
# 日志文件记录
logger.add("file_time.log")
# 日志文件转存
logger.add("file_time.log", rotation="500 MB")
logger.add("file_time.log", rotation="12:00")
logger.add("file_time.log", rotation="1 week")
# 多次时间之后清理
logger.add("file_X.log", retention="10 days")
# 使用zip文件格式保存
logger.add("file_Y.log", compression="zip")
5. 更优雅的字符串格式化输出
logger.info(
"If you're using Python , prefer feature of course!",
3.10, feature="f-strings")
6. 在子线程或主线程中捕获异常
@logger.catch
def my_function(x, y, z):
# An error? It's caught anyway!
return 1 / (x + y + z)
my_function(0, 0, 0)
7. 可以设置不同级别的日志记录样式
- Loguru 会自动为不同的日志级别,添加不同的颜色进行区分, 也支持自定义颜色哦~
logger.add(sys.stdout,
colorize=True,
format="<green>time</green> <level>message</level>")
logger.add('logs/z_time.log',
level='DEBUG',
format='time:YYYY-MM-DD :mm:ss - level - file - line - message',
rotation="10 MB")
8.支持异步且线程和多进程安全
- 默认情况下,添加到 logger 中的日志信息都是线程安全的。但这并不是多进程安全的,我们可以通过添加 enqueue 参数来确保日志完整性。
- 如果我们想要在异步任务中使用日志记录的话,也是可以使用同样的参数来保证的。并且通过 complete() 来等待执行完成。
# 异步写入
logger.add("some_file.log", enqueue=True)
你没有看错, 只需要enqueue=True
即可异步执行
9. 异常的完整性描述
用于记录代码中发生的异常的 bug 跟踪,Loguru 通过允许显示整个堆栈跟踪(包括变量值)来帮助您识别问题
logger.add("out.log", backtrace=True, diagnose=True)
def func(a, b):
return a / b
def nested(c):
try:
func(5, c)
except ZeroDivisionError:
logger.exception("What?!")
nested(0)
10. 结构化日志记录
- 对日志进行序列化以便更容易地解析或传递数据结构,使用序列化参数,在将每个日志消息发送到配置的接收器之前,将其转换为 JSON 字符串。
- 同时,使用 bind() 方法,可以通过修改额外的 record 属性来将日志记录器消息置于上下文中。还可以通过组合 bind() 和 filter 对日志进行更细粒度的控制。
- 最后 patch() 方法允许将动态值附加到每个新消息的记录 dict 上。
# 序列化为json格式
logger.add(custom_sink_function, serialize=True)
# bind方法的用处
logger.add("file.log", format="extra[ip] extra[user] message")
context_logger = logger.bind(ip="192.168.2.174", user="someone")
context_logger.info("Contextualize your logger easily")
context_logger.bind(user="someone_else").info("Inline binding of extra attribute")
context_logger.info("Use kwargs to add context during formatting: user", user="anybody")
# 粒度控制
logger.add("special.log", filter=lambda record: "special" in record["extra"])
logger.debug("This message is not logged to the file")
logger.bind(special=True).info("This message, though, is logged to the file!")
# patch()方法的用处
logger.add(sys.stderr, format="extra[utc] message")
loggerlogger = logger.patch(lambda record: record["extra"].update(utc=datetime.utcnow()))
11. 惰性计算
有时希望在生产环境中记录详细信息而不会影响性能,可以使用 opt() 方法来实现这一点。
logger.opt(lazy=True).debug("If sink level <= DEBUG: x", x=lambda: expensive_function(2**64))
# By the way, "opt()" serves many usages
logger.opt(exception=True).info("Error stacktrace added to the log message (tuple accepted too)")
logger.opt(colors=True).info("Per message <blue>colors</blue>")
logger.opt(record=True).info("Display values from the record (eg. record[thread])")
logger.opt(raw=True).info("Bypass sink formatting\\n")
logger.opt(depth=1).info("Use parent stack context (useful within wrapped functions)")
logger.opt(capture=False).info("Keyword arguments not added to dest dict", dest="extra")
12. 可定制的级别
new_level = logger.level("SNAKY", no=38, color="<yellow>", icon="🐍")
logger.log("SNAKY", "Here we go!")
13. 适用于脚本和库
# For scripts
config =
"handlers": [
"sink": sys.stdout, "format": "time - message",
"sink": "file.log", "serialize": True,
],
"extra": "user": "someone"
logger.configure(**config)
# For libraries
logger.disable("my_library")
logger.info("No matter added sinks, this message is not displayed")
logger.enable("my_library")
logger.info("This message however is propagated to the sinks")
14. 完全兼容标准日志记录
- 希望使用 Loguru 作为内置的日志处理程序?
- 需要将 Loguru 消息到标准日志?
- 想要拦截标准的日志消息到 Loguru 中汇总?
handler = logging.handlers.SysLogHandler(address=('localhost', 514))
logger.add(handler)
class PropagateHandler(logging.Handler):
def emit(self, record):
logging.getLogger(record.name).handle(record)
logger.add(PropagateHandler(), format="message")
class InterceptHandler(logging.Handler):
def emit(self, record):
# Get corresponding Loguru level if it exists
try:
level = logger.level(record.levelname).name
except ValueError:
level = record.levelno
# Find caller from where originated the logged message
frame, depth = logging.currentframe(), 2
while frame.f_code.co_filename == logging.__file__:
frameframe = frame.f_back
depth += 1
logger.opt(depthdepth=depth, exception=record.exc_info).log(level, record.getMessage())
logging.basicConfig(handlers=[InterceptHandler()], level=0)
15. 非常方便的解析器
- 从生成的日志中提取特定的信息通常很有用,这就是为什么 Loguru 提供了一个 parse() 方法来帮助处理日志和正则表达式。
pattern = r"(?P<time>.*) - (?P<level>[0-9]+) - (?P<message>.*)" # Regex with named groups
caster_dict = dict(time=dateutil.parser.parse, level=int) # Transform matching groups
for groups in logger.parse("file.log", pattern, cast=caster_dict):
print("Parsed:", groups)
# "level": 30, "message": "Log example", "time": datetime(2018, 12, 09, 11, 23, 55)
16. 通知机制 (邮件告警)
import notifiers
params =
"username": "you@gmail.com",
"password": "abc123",
"to": "dest@gmail.com"
# Send a single notification
notifier = notifiers.get_notifier("gmail")
notifier.notify(message="The application is running!", **params)
# Be alerted on each error message
from notifiers.logging import NotificationHandler
handler = NotificationHandler("gmail", defaults=params)
logger.add(handler, level="ERROR")
17. Flask 框架集成
- 现在最关键的一个问题是如何兼容别的 logger,比如说 tornado 或者 django 有一些默认的 logger。
- 经过研究,最好的解决方案是参考官方文档的,完全整合 logging 的工作方式。比如下面将所有的 logging都用 loguru 的 logger 再发送一遍消息。
import logging
import sys
from pathlib import Path
from flask import Flask
from loguru import logger
app = Flask(__name__)
class InterceptHandler(logging.Handler):
def emit(self, record):
loggerlogger_opt = logger.opt(depth=6, exception=record.exc_info)
logger_opt.log(record.levelname, record.getMessage())
def configure_logging(flask_app: Flask):
"""配置日志"""
path = Path(flask_app.config['LOG_PATH'])
if not path.exists():
path.mkdir(parents=True)
log_name = Path(path, 'sips.log')
logging.basicConfig(handlers=[InterceptHandler(level='INFO')], level='INFO')
# 配置日志到标准输出流
logger.configure(handlers=["sink": sys.stderr, "level": 'INFO'])
# 配置日志到输出到文件
logger.add(log_name, rotation="500 MB", encoding='utf-8', colorize=False, level='INFO')
18. 要点解析
介绍,主要函数的使用方法和细节 - add()的创建和删除
- add() 非常重要的参数 sink 参数
- 具体的实现规范可以参见官方文档
- 可以实现自定义 Handler 的配置,比如 FileHandler、StreamHandler 等等
- 可以自行定义输出实现
- 代表文件路径,会自动创建对应路径的日志文件并将日志输出进去
- 例如 sys.stderr 或者 open(‘file.log’, ‘w’) 都可以
- 可以传入一个 file 对象
- 可以直接传入一个 str 字符串或者 pathlib.Path 对象
- 可以是一个方法
- 可以是一个 logging 模块的 Handler
- 可以是一个自定义的类
def add(self, sink, *,
level=_defaults.LOGURU_LEVEL, format=_defaults.LOGURU_FORMAT,
filter=_defaults.LOGURU_FILTER, colorize=_defaults.LOGURU_COLORIZE,
serialize=_defaults.LOGURU_SERIALIZE, backtrace=_defaults.LOGURU_BACKTRACE,
diagnose=_defaults.LOGURU_DIAGNOSE, enqueue=_defaults.LOGURU_ENQUEUE,
catch=_defaults.LOGURU_CATCH, **kwargs
):
- 另外添加 sink 之后我们也可以对其进行删除,相当于重新刷新并写入新的内容。删除的时候根据刚刚 add 方法返回的 id 进行删除即可。可以发现,在调用 remove 方法之后,确实将历史 log 删除了。但实际上这并不是删除,只不过是将 sink 对象移除之后,在这之前的内容不会再输出到日志中,这样我们就可以实现日志的刷新重新写入操作
from loguru import logger
trace = logger.add('runtime.log')
logger.debug('this is a debug message')
logger.remove(trace)
logger.debug('this is another debug message')
三、总结
我们在开发流程中, 通过日志快速定位问题, 高效率解决问题, 我认为 loguru 能帮你解决不少麻烦, 赶快试试吧~
当然, 使用各种也有不少麻烦, 例如:
1. 常见错误1:
--- Logging error in Loguru Handler #3 ---
Record was: None
Traceback (most recent call last):
File "/usr/local/lib/python3.9/site-packages/loguru/_handler.py", line 272, in _queued_writer
message = queue.get()
File "/usr/local/lib/python3.9/multiprocessing/queues.py", line 366, in get
res = self._reader.recv_bytes()
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 221, in recv_bytes
buf = self._recv_bytes(maxlength)
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 419, in _recv_bytes
buf = self._recv(4)
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 384, in _recv
chunk = read(handle, remaining)
OSError: [Errno 9] Bad file descriptor
--- End of logging error ---
解决办法:
尝试将logs文件夹忽略git提交, 避免和服务器文件冲突即可;
当然也不止这个原因引起这个问题, 也可能是三方库(ciscoconfparse)冲突所致.解决办法: https://github.com/Delgan/loguru/issues/534
2.常见错误2:
File "/home/ronaldinho/xxx/xxx/venv/lib/python3.9/site-packages/loguru/_logger.py", line 939, in add
handler = Handler(
File "/home/ronaldinho/xxx/xxx/venv/lib/python3.9/site-packages/loguru/_handler.py", line 86, in __init__
self._queue = multiprocessing.SimpleQueue()
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/context.py", line 113, in SimpleQueue
return SimpleQueue(ctx=self.get_context())
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/queues.py", line 342, in __init__
self._rlock = ctx.Lock()
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/context.py", line 68, in Lock
return Lock(ctx=self.get_context())
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/synchronize.py", line 162, in __init__
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/synchronize.py", line 57, in __init__
OSError: [Errno 24] Too many open files
你可以 remove()添加的处理程序,它应该释放文件句柄。
总之, 诸如此类的问题都能找到解决方法, 总体来说这个库是非常值得应用的, 白看不如一试, 快去coding吧~
好辣🌶, 关于loguru的介绍就介绍到这里, 喜欢本篇博文记得点赞收藏哦~ ❤☕️
以上是关于Python3 - Loguru 相见恨晚的输出日志工具的主要内容,如果未能解决你的问题,请参考以下文章