第二篇: 词向量之Spark word2vector实战
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第二篇: 词向量之Spark word2vector实战相关的知识,希望对你有一定的参考价值。
参考技术A word2vector 是google开源的一个生成词向量的工具,以语言模型为优化目标,迭代更新训练文本中的词向量,最终收敛获得词向量。词向量可以作为文本分析中重要的特征,在分类问题、标注问题等场景都有着重要的应用价值。本文总结下了spark word2vector使用过程中遇到的问题,以及给出word2vector使用所需的参数配置,希望能够减少新手在使用过程中遇到的坑,希望有所帮助。from pyspark.ml.feature import Word2Vec
from pyspark.sql import SQLContext
from pyspark import SparkConf, SparkContext
from pyspark.sql import Row
conf = (SparkConf().set("spark.driver.maxResultSize","2g"))
sc = SparkContext(conf=conf)
sqlContext = SQLContext(sc)
text = sc.textFile("yourfilepath")
documentDF = text.map(lambda x : Row(text=x.split(" "))).toDF()
word2Vec = Word2Vec(vectorSize=200, minCount=5, numPartitions=100,inputCol="text", outputCol="result")
model = word2Vec.fit(documentDF)
vector_model = model.getVectors()
vector_model.saveAsParquetFile("modelpath")
spark-submit
--master yarn-client
--executor-cores 2
--executor-memory 14g
--queue your-queue
--num-executors 100
--driver-memory 10g
--conf spark.ui.port=$RANDOM
--conf spark.shuffle.manager=SORT
--conf spark.shuffle.memoryFraction=0.2
--conf spark.yarn.executor.memoryOverhead=2048
--conf spark.core.connection.ack.wait.timeout=300
--conf spark.akka.frameSize=600 ./word2vector_training.py
第二篇:Spark SQL Catalyst源码分析之SqlParser
/** Spark SQL源码分析系列文章*/
Spark SQL的核心执行流程我们已经分析完毕,可以参见Spark SQL核心执行流程,下面我们来分析执行流程中各个核心组件的工作职责。
本文先从入口开始分析,即如何解析SQL文本生成逻辑计划的,主要设计的核心组件式SqlParser是一个SQL语言的解析器,用scala实现的Parser将解析的结果封装为Catalyst TreeNode ,关于Catalyst这个框架后续文章会介绍。
一、SQL Parser入口
先来看流程图:
一段SQL会经过SQL Parser解析生成UnResolved Logical Plan(包含UnresolvedRelation、 UnresolvedFunction、 UnresolvedAttribute)。
在源代码里是:
- def sql(sqlText: String): SchemaRDD = new SchemaRDD(this, parseSql(sqlText))//sql("select name,value from temp_shengli") 实例化一个SchemaRDD
- protected[sql] def parseSql(sql: String): LogicalPlan = parser(sql) //实例化SqlParser
- class SqlParser extends StandardTokenParsers with PackratParsers {
- def apply(input: String): LogicalPlan = { //传入sql语句调用apply方法,input参数即sql语句
- // Special-case out set commands since the value fields can be
- // complex to handle without RegexParsers. Also this approach
- // is clearer for the several possible cases of set commands.
- if (input.trim.toLowerCase.startsWith("set")) {
- input.trim.drop(3).split("=", 2).map(_.trim) match {
- case Array("") => // "set"
- SetCommand(None, None)
- case Array(key) => // "set key"
- SetCommand(Some(key), None)
- case Array(key, value) => // "set key=value"
- SetCommand(Some(key), Some(value))
- }
- } else {
- phrase(query)(new lexical.Scanner(input)) match {
- case Success(r, x) => r
- case x => sys.error(x.toString)
- }
- }
- }
1. 当我们调用sql("select name,value from temp_shengli")时,实际上是new了一个SchemaRDD
2. new SchemaRDD时,构造方法调用parseSql方法,parseSql方法实例化了一个SqlParser,这个Parser初始化调用其apply方法。
3. apply方法分支:
3.1 如果sql命令是set开头的就调用SetCommand,这个类似Hive里的参数设定,SetCommand其实是一个Catalyst里TreeNode之LeafNode,也是继承自LogicalPlan,关于Catalyst的TreeNode库这个暂不详细介绍,后面会有文章来详细讲解。
3.2 关键是else语句块里,才是SqlParser解析SQL的核心代码:
- phrase(query)(new lexical.Scanner(input)) match {
- case Success(r, x) => r
- case x => sys.error(x.toString)
- }
可能 phrase方法大家很陌生,不知道是干什么的,那么我们首先看一下SqlParser的类图:
SqlParser类继承了scala内置集合Parsers,这个Parsers。我们可以看到SqlParser现在是具有了分词的功能,也能解析combiner的语句(类似p ~> q,后面会介绍)。
Phrase方法:
- /** A parser generator delimiting whole phrases (i.e. programs).
- *
- * `phrase(p)` succeeds if `p` succeeds and no input is left over after `p`.
- *
- * @param p the parser that must consume all input for the resulting parser
- * to succeed.
- * @return a parser that has the same result as `p`, but that only succeeds
- * if `p` consumed all the input.
- */
- def phrase[T](p: Parser[T]) = new Parser[T] {
- def apply(in: Input) = lastNoSuccessVar.withValue(None) {
- p(in) match {
- case s @ Success(out, in1) =>
- if (in1.atEnd)
- s
- else
- lastNoSuccessVar.value filterNot { _.next.pos < in1.pos } getOrElse Failure("end of input expected", in1)
- case ns => lastNoSuccessVar.value.getOrElse(ns)
- }
- }
- }
Phrase是一个循环读取输入字符的方法,如果输入in没有到达最后一个字符,就继续对parser进行解析,直到最后一个输入字符。
我们注意到Success这个类,出现在Parser里, 在else块里最终返回的也有Success:
- /** The success case of `ParseResult`: contains the result and the remaining input.
- *
- * @param result The parser‘s output
- * @param next The parser‘s remaining input
- */
- case class Success[+T](result: T, override val next: Input) extends ParseResult[T] {
通过源码可知,Success封装了当前解析器的解析结果result, 和还没有解析的语句。
所以上面判断了Success的解析结果中in1.atEnd? 如果输入流结束了,就返回s,即Success对象,这个Success包含了SqlParser解析的输出。
二、Sql Parser核心
在SqlParser里phrase接受2个参数:
第一个是query,一种带模式的解析规则,返回的是LogicalPlan。
第二个是lexical词汇扫描输入。
SqlParser parse的流程是,用lexical词汇扫描接受SQL关键字,使用query模式来解析符合规则的SQL。
2.1 lexical keyword
- protected case class Keyword(str: String)
- protected val ALL = Keyword("ALL")
- protected val AND = Keyword("AND")
- protected val AS = Keyword("AS")
- protected val ASC = Keyword("ASC")
- protected val APPROXIMATE = Keyword("APPROXIMATE")
- protected val AVG = Keyword("AVG")
- protected val BY = Keyword("BY")
- protected val CACHE = Keyword("CACHE")
- protected val CAST = Keyword("CAST")
- protected val COUNT = Keyword("COUNT")
- protected val DESC = Keyword("DESC")
- protected val DISTINCT = Keyword("DISTINCT")
- protected val FALSE = Keyword("FALSE")
- protected val FIRST = Keyword("FIRST")
- protected val FROM = Keyword("FROM")
- protected val FULL = Keyword("FULL")
- protected val GROUP = Keyword("GROUP")
- protected val HAVING = Keyword("HAVING")
- protected val IF = Keyword("IF")
- protected val IN = Keyword("IN")
- protected val INNER = Keyword("INNER")
- protected val INSERT = Keyword("INSERT")
- protected val INTO = Keyword("INTO")
- protected val IS = Keyword("IS")
- protected val JOIN = Keyword("JOIN")
- protected val LEFT = Keyword("LEFT")
- protected val LIMIT = Keyword("LIMIT")
- protected val MAX = Keyword("MAX")
- protected val MIN = Keyword("MIN")
- protected val NOT = Keyword("NOT")
- protected val NULL = Keyword("NULL")
- protected val ON = Keyword("ON")
- protected val OR = Keyword("OR")
- protected val OVERWRITE = Keyword("OVERWRITE")
- protected val LIKE = Keyword("LIKE")
- protected val RLIKE = Keyword("RLIKE")
- protected val UPPER = Keyword("UPPER")
- protected val LOWER = Keyword("LOWER")
- protected val REGEXP = Keyword("REGEXP")
- protected val ORDER = Keyword("ORDER")
- protected val OUTER = Keyword("OUTER")
- protected val RIGHT = Keyword("RIGHT")
- protected val SELECT = Keyword("SELECT")
- protected val SEMI = Keyword("SEMI")
- protected val STRING = Keyword("STRING")
- protected val SUM = Keyword("SUM")
- protected val TABLE = Keyword("TABLE")
- protected val TRUE = Keyword("TRUE")
- protected val UNCACHE = Keyword("UNCACHE")
- protected val UNION = Keyword("UNION")
- protected val WHERE = Keyword("WHERE")
- override val lexical = new SqlLexical(reservedWords)
2.2 query
左边算子和右边的算子只要有一个成功了,就返回succeed,类似or
~ is the sequential combinator. It says “succeed if the left operand parses successfully, and then the right parses successfully on the remaining input”
左边的算子成功后,右边的算子对后续的输入也计算成功,就返回succeed
opt `opt(p)` is a parser that returns `Some(x)` if `p` returns `x` and `None` if `p` fails.
如果p算子成功则返回则返回Some(x) 如果p算子失败,返回fails
^^^ `p ^^^ v` succeeds if `p` succeeds; discards its result, and returns `v` instead.
如果左边的算子成功,取消左边算子的结果,返回右边算子。
~> says “succeed if the left operand parses successfully followed by the right, but do not include the left content in the result”
如果左边的算子和右边的算子都成功了,返回的结果中不包含左边的返回值。
protected lazy val limit: Parser[Expression] =
LIMIT ~> expression
<~ is the reverse, “succeed if the left operand is parsed successfully followed by the right, but do not include the right content in the result”
这个和~>操作符的意思相反,如果左边的算子和右边的算子都成功了,返回的结果中不包含右边的
termExpression <~ IS ~ NOT ~ NULL ^^ { case e => IsNotNull(e) } |
^^{} 或者 ^^=> is the transformation combinator. It says “if the left operand parses successfully, transform the result using the function on the right”
rep => simply says “expect N-many repetitions of parser X” where X is the parser passed as an argument to rep
变形连接符,意思是如果左边的算子成功了,用^^右边的算子函数作用于返回的结果
- protected lazy val query: Parser[LogicalPlan] = (
- select * (
- UNION ~ ALL ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Union(q1, q2) } |
- UNION ~ opt(DISTINCT) ^^^ { (q1: LogicalPlan, q2: LogicalPlan) => Distinct(Union(q1, q2)) }
- )
- | insert | cache
- )
- select a,b from c
- union all
- select e,f from g
- protected lazy val select: Parser[LogicalPlan] =
- SELECT ~> opt(DISTINCT) ~ projections ~
- opt(from) ~ opt(filter) ~
- opt(grouping) ~
- opt(having) ~
- opt(orderBy) ~
- opt(limit) <~ opt(";") ^^ {
- case d ~ p ~ r ~ f ~ g ~ h ~ o ~ l =>
- val base = r.getOrElse(NoRelation)
- val withFilter = f.map(f => Filter(f, base)).getOrElse(base)
- val withProjection =
- g.map {g =>
- Aggregate(assignAliases(g), assignAliases(p), withFilter)
- }.getOrElse(Project(assignAliases(p), withFilter))
- val withDistinct = d.map(_ => Distinct(withProjection)).getOrElse(withProjection)
- val withHaving = h.map(h => Filter(h, withDistinct)).getOrElse(withDistinct)
- val withOrder = o.map(o => Sort(o, withHaving)).getOrElse(withHaving)
- val withLimit = l.map { l => Limit(l, withOrder) }.getOrElse(withOrder)
- withLimit
- }
- select game_id, user_name from game_log where date<=‘2014-07-19‘ and user_name=‘shengli‘ group by game_id having game_id > 1 orderBy game_id limit 50.
projections是什么呢?
- protected lazy val projections: Parser[Seq[Expression]] = repsep(projection, ",")
- protected lazy val projection: Parser[Expression] =
- expression ~ (opt(AS) ~> opt(ident)) ^^ {
- case e ~ None => e
- case e ~ Some(a) => Alias(e, a)()
- }
模式里from是什么的?
- protected lazy val from: Parser[LogicalPlan] = FROM ~> relations
- protected lazy val relation: Parser[LogicalPlan] =
- joinedRelation |
- relationFactor
- protected lazy val relationFactor: Parser[LogicalPlan] =
- ident ~ (opt(AS) ~> opt(ident)) ^^ {
- case tableName ~ alias => UnresolvedRelation(None, tableName, alias)
- } |
- "(" ~> query ~ ")" ~ opt(AS) ~ ident ^^ { case s ~ _ ~ _ ~ a => Subquery(a, s) }
- protected lazy val joinedRelation: Parser[LogicalPlan] =
- relationFactor ~ opt(joinType) ~ JOIN ~ relationFactor ~ opt(joinConditions) ^^ {
- case r1 ~ jt ~ _ ~ r2 ~ cond =>
- Join(r1, r2, joinType = jt.getOrElse(Inner), cond)
- }
这里看出来,其实就是table之间的操作,但是返回的Subquery确实是一个LogicalPlan
- case class Subquery(alias: String, child: LogicalPlan) extends UnaryNode {
- override def output = child.output.map(_.withQualifiers(alias :: Nil))
- override def references = Set.empty
- }
scala里的语法糖很多,这样写的确比较方便,但是对初学者可能有点晦涩了。
三、总结
原创文章,转载请注明:
转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory
本文链接地址:http://blog.csdn.net/oopsoom/article/details/37943507
注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。
转自:http://blog.csdn.net/oopsoom/article/details/37943507
以上是关于第二篇: 词向量之Spark word2vector实战的主要内容,如果未能解决你的问题,请参考以下文章