MapReduce案例(数据中获取最大值TopN)
Posted 月疯
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce案例(数据中获取最大值TopN)相关的知识,希望对你有一定的参考价值。
案例:
案列:
data.txt
10 9 8 7 6 5 1 2 3 4 11 12 13 14 15 20 19 18 17 16
package squencefile;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.TreeMap;
public class TopN
public static class MyMapper extends Mapper<LongWritable,Text,NullWritable,LongWritable>
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException
String words = value.toString();
String[] wordArr = words.split(" ");
for(String word:wordArr)
context.write(NullWritable.get(),new LongWritable(Long.parseLong(word)));
public static class MyReducer extends Reducer<NullWritable,LongWritable,NullWritable,LongWritable>
@Override
protected void reduce(NullWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException
//使用TreeMap按照key进行排序
TreeMap<Long,String> treeMap=new TreeMap<>();
for(LongWritable valTmp:values)
Long value = valTmp.get();
//将<数字,"">放入treeMap中进行排序
treeMap.put(value,"");
if(treeMap.size()>3)
//因为treeMap默认是按照key升序排序,所以第一项就是小值,直接删除第一项即可
treeMap.remove(treeMap.firstKey());
//输出treeMap中的前三个
for(Long word:treeMap.keySet())
context.write(NullWritable.get(),new LongWritable(word));
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException
//创建一个job,也就是一个运行环境
Configuration conf=new Configuration();
//集群运行
// conf.set("fs.defaultFS","hdfs://hadoop:8088");
//本地运行
Job job=Job.getInstance(conf,"TopN");
//程序入口(打jar包)
job.setJarByClass(TopN.class);
//需要输入文件:输入文件
FileInputFormat.addInputPath(job,new Path("F:\\\\filnk_package\\\\hadoop-2.10.1\\\\data\\\\test7\\\\data.txt"));
//编写mapper处理逻辑
job.setMapperClass(TopN.MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//shuffle流程
//对局部进行排序,结果交给reducer进行处理
// job.setCombinerClass(MyReducer.class);
//编写reduce处理逻辑
job.setReducerClass(TopN.MyReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//输出文件
FileOutputFormat.setOutputPath(job,new Path("F:\\\\filnk_package\\\\hadoop-2.10.1\\\\data\\\\test7\\\\out"));
//运行job,需要放到Yarn上运行
boolean result =job.waitForCompletion(true);
System.out.print(result?1:0);
以上是关于MapReduce案例(数据中获取最大值TopN)的主要内容,如果未能解决你的问题,请参考以下文章
大数据技术之_05_Hadoop学习_04_MapReduce_Hadoop企业优化(重中之重)+HDFS小文件优化方法+MapReduce扩展案例+倒排索引案例(多job串联)+TopN案例+找博客
2018-08-08 期 MapReduce实现单个商品支付金额最大的前N个用户排行(TopN)
大数据之Hadoop(MapReduce):MapReduce扩展案例