youcans 的 OpenCV 例程200篇125. 形态算法之提取连通分量

Posted 小白YouCans

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了youcans 的 OpenCV 例程200篇125. 形态算法之提取连通分量相关的知识,希望对你有一定的参考价值。

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中


【youcans 的 OpenCV 例程 200 篇】125. 形态算法之提取连通分量

3. 形态学算法

形态学处理的主要应用是提取图像中用来表示和描述形状的元素和成分,例如提取边界、连通分量、凸壳和区域骨架。


3.3 提取连通分量

从二值图像中提取连通分量是自动图像分析的核心步骤。

约束膨胀提取连通分量:

冈萨雷斯《数字图像处理(第四版)》提供了一种提取连通分量的形态学算法,构造一个元素为 0 的阵列 X 0 X_0 X0,其中对应连通分量的像素值为 1,采用迭代过程可以得到所有的连通分量:
X k = ( X k − 1 ⊕ B ) ∩ I ,   k = 1 , 2 , 3... X_k = (X_k-1 \\oplus B) \\cap I, \\ k=1,2,3... Xk=(Xk1B)I, k=1,2,3...

该算法与约束膨胀孔洞填充的思路相同,使用条件膨胀来限制膨胀的增长,但用 I I I 代替 I c I^c Ic 以寻找前景点。

对于内含多个连通分量的图像 A,从仅为连通分量 A1 内部的某个像素 B 开始,用 3*3的结构元不断进行膨胀。由于其它连通分量与 A1 之间至少有一条像素宽度的空隙,每次膨胀都不会产生位于其它连通区域内的点。用每次膨胀后的图像与原始图像 A 取交集,就把膨胀限制在 A1 内部。随着集合 B 的不断膨胀,B 的区域不断生长,但又被限制在连通分量 A1 的内部,最终就会充满整个连通分量 A1,从而实现对连通分量 A1 的提取。

提取连通分量的过程也是对连通分量的标注,通常给图像中的每个连通区分配编号,在输出图像中该连通区内的所有的像素值赋值为对应的区域编号,这样的输出图像被称为标注图像。


例程 10.13:形态算法之提取连通分量

    # # 10.13 约束膨胀算法提取连通分量
    # 本算法参考:冈萨雷斯《数字图像处理(第四版)》 9.5.3 提取连通分量
    # 图像为二值化图像,255 白色为目标物,0 黑色为背景
    imgGray = cv2.imread("../images/Fig0918a.tif", flags=0)  # flags=0 读取为灰度图像
    # 预处理
    ret, imgThresh = cv2.threshold(imgGray, 200, 255, cv2.THRESH_BINARY_INV)  # 二值化处理
    kernel = np.ones((3, 3), dtype=np.uint8)  # 生成盒式卷积核
    imgClose = cv2.morphologyEx(imgThresh, cv2.MORPH_CLOSE, kernel)  # 闭运算,消除噪点
    imgErode = cv2.erode(imgClose, kernel=kernel)  # 腐蚀运算,腐蚀亮点

    imgBin = imgErode
    imgBinCopy = imgBin.copy()  # 复制 imgBin
    xBinary = np.zeros(imgBin.shape, np.uint8)  # 大小与 img 相同,像素值为 0
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))  # 3×3结构元
    count = []  # 为了记录连通分量中的像素个数
    while imgBinCopy.any():  # 循环迭代,直到 imgBinCopy 中的像素值全部为0
        Xa_copy, Ya_copy = np.where(imgBinCopy > 0)  # imgBinCopy 中值为255的像素的坐标
        xBinary[Xa_copy[0]][Ya_copy[0]] = 255  # 选取第一个点,并将 xBinary 中对应像素值改为255

        # 约束膨胀,先对 xBinary 膨胀,再与 imgBin 执行与操作(取交集)
        for i in range(100):
            dilation_B = cv2.dilate(xBinary, kernel)
            xBinary = cv2.bitwise_and(imgBin, dilation_B)

        # 取 xBinary 值为255的像素坐标,并将 imgBinCopy 中对应坐标像素值变为0
        Xb, Yb = np.where(xBinary > 0)
        imgBinCopy[Xb, Yb] = 0

        # 显示连通分量及其包含像素数量
        count.append(len(Xb))
        lenCount = len(count)
        if lenCount == 0:
            print("无连通分量")
        elif lenCount == 1:
            print("第1个连通分量为".format(count[0]))
        else:
            print("第个连通分量为".format(len(count), count[-1]-count[-2]))

    # print(count)
    plt.figure(figsize=(12, 6))
    plt.subplot(231), plt.axis('off'), plt.title("origin")
    plt.imshow(imgGray, cmap='gray', vmin=0, vmax=255)
    plt.subplot(232), plt.title("threshold"), plt.axis('off')
    plt.imshow(imgBin, cmap='gray', vmin=0, vmax=255)
    plt.subplot(233), plt.title("closed image"), plt.axis('off')
    plt.imshow(imgClose, cmap='gray', vmin=0, vmax=255)
    plt.subplot(234), plt.title("eroded image"), plt.axis('off')
    plt.imshow(imgErode, cmap='gray', vmin=0, vmax=255)
    plt.subplot(235), plt.title("xBinary"), plt.axis('off')
    plt.imshow(xBinary, cmap='gray', vmin=0, vmax=255)
    plt.subplot(236), plt.title("binary copy"), plt.axis('off')
    plt.imshow(imgBinCopy, cmap='gray', vmin=0, vmax=255)
    plt.tight_layout()
    plt.show()


(本节完)


版权声明:

youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/123457062)

Copyright 2022 youcans, XUPT
Crated:2022-3-12


欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中

【youcans 的 OpenCV 例程200篇】01. 图像的读取(cv2.imread)
【youcans 的 OpenCV 例程200篇】02. 图像的保存(cv2.imwrite)
【youcans 的 OpenCV 例程200篇】03. 图像的显示(cv2.imshow)
【youcans 的 OpenCV 例程200篇】04. 用 matplotlib 显示图像(plt.imshow)
【youcans 的 OpenCV 例程200篇】05. 图像的属性(np.shape)
【youcans 的 OpenCV 例程200篇】06. 像素的编辑(img.itemset)
【youcans 的 OpenCV 例程200篇】07. 图像的创建(np.zeros)
【youcans 的 OpenCV 例程200篇】08. 图像的复制(np.copy)
【youcans 的 OpenCV 例程200篇】09. 图像的裁剪(cv2.selectROI)
【youcans 的 OpenCV 例程200篇】10. 图像的拼接(np.hstack)
【youcans 的 OpenCV 例程200篇】11. 图像通道的拆分(cv2.split)
【youcans 的 OpenCV 例程200篇】12. 图像通道的合并(cv2.merge)
【youcans 的 OpenCV 例程200篇】13. 图像的加法运算(cv2.add)
【youcans 的 OpenCV 例程200篇】14. 图像与标量相加(cv2.add)
【youcans 的 OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)
【youcans 的 OpenCV 例程200篇】16. 不同尺寸的图像加法
【youcans 的 OpenCV 例程200篇】17. 两张图像的渐变切换
【youcans 的 OpenCV 例程200篇】18. 图像的掩模加法
【youcans 的 OpenCV 例程200篇】19. 图像的圆形遮罩
【youcans 的 OpenCV 例程200篇】20. 图像的按位运算
【youcans 的 OpenCV 例程200篇】21. 图像的叠加
【youcans 的 OpenCV 例程200篇】22. 图像添加非中文文字
【youcans 的 OpenCV 例程200篇】23. 图像添加中文文字
【youcans 的 OpenCV 例程200篇】24. 图像的仿射变换
【youcans 的 OpenCV 例程200篇】25. 图像的平移
【youcans 的 OpenCV 例程200篇】26. 图像的旋转(以原点为中心)
【youcans 的 OpenCV 例程200篇】27. 图像的旋转(以任意点为中心)
【youcans 的 OpenCV 例程200篇】28. 图像的旋转(直角旋转)
【youcans 的 OpenCV 例程200篇】29. 图像的翻转(cv2.flip)
【youcans 的 OpenCV 例程200篇】30. 图像的缩放(cv2.resize)
【youcans 的 OpenCV 例程200篇】31. 图像金字塔(cv2.pyrDown)
【youcans 的 OpenCV 例程200篇】32. 图像的扭变(错切)
【youcans 的 OpenCV 例程200篇】33. 图像的复合变换
【youcans 的 OpenCV 例程200篇】34. 图像的投影变换
【youcans 的 OpenCV 例程200篇】35. 图像的投影变换(边界填充)
【youcans 的 OpenCV 例程200篇】36. 直角坐标与极坐标的转换
【youcans 的 OpenCV 例程200篇】37. 图像的灰度化处理和二值化处理
【youcans 的 OpenCV 例程200篇】38. 图像的反色变换(图像反转)
【youcans 的 OpenCV 例程200篇】39. 图像灰度的线性变换
【youcans 的 OpenCV 例程200篇】40. 图像分段线性灰度变换
【youcans 的 OpenCV 例程200篇】41. 图像的灰度变换(灰度级分层)
【youcans 的 OpenCV 例程200篇】42. 图像的灰度变换(比特平面分层)
【youcans 的 OpenCV 例程200篇】43. 图像的灰度变换(对数变换)
【youcans 的 OpenCV 例程200篇】44. 图像的灰度变换(伽马变换)
【youcans 的 OpenCV 例程200篇】45. 图像的灰度直方图
【youcans 的 OpenCV 例程200篇】46. 直方图均衡化
【youcans 的 OpenCV 例程200篇】47. 图像增强—直方图匹配
【youcans 的 OpenCV 例程200篇】48. 图像增强—彩色直方图匹配
【youcans 的 OpenCV 例程200篇】49. 图像增强—局部直方图处理
【youcans 的 OpenCV 例程200篇】50. 图像增强—直方图统计量图像增强
【youcans 的 OpenCV 例程200篇】51. 图像增强—直方图反向追踪
【youcans 的 OpenCV 例程200篇】52. 图像的相关与卷积运算
【youcans 的 OpenCV 例程200篇】53. Scipy 实现图像二维卷积
【youcans 的 OpenCV 例程200篇】54. OpenCV 实现图像二维卷积
【youcans 的 OpenCV 例程200篇】55. 可分离卷积核
【youcans 的 OpenCV 例程200篇】56. 低通盒式滤波器
【youcans 的 OpenCV 例程200篇】57. 低通高斯滤波器
【youcans 的 OpenCV 例程200篇】58. 非线性滤波—中值滤波
【youcans 的 OpenCV 例程200篇】59. 非线性滤波—双边滤波
【youcans 的 OpenCV 例程200篇】60. 非线性滤波—联合双边滤波
【youcans 的 OpenCV 例程200篇】61. 导向滤波(Guided filter)
【youcans 的 OpenCV 例程200篇】62. 图像锐化——钝化掩蔽
【youcans 的 OpenCV 例程200篇】63. 图像锐化——Laplacian 算子
【youcans 的 OpenCV 例程200篇】64. 图像锐化——Sobel 算子
【youcans 的 OpenCV 例程200篇】65. 图像锐化——Scharr 算子
【youcans 的 OpenCV 例程200篇】66. 图像滤波之低通/高通/带阻/带通
【youcans 的 OpenCV 例程200篇】67. 空间域图像增强的综合应用
【youcans 的 OpenCV 例程200篇】68. 空间域图像增强的综合应用
【youcans 的 OpenCV 例程200篇】69. 连续非周期信号的傅立叶系数
【youcans 的 OpenCV 例程200篇】70. 一维连续函数的傅里叶变换
【youcans 的 OpenCV 例程200篇】71. 连续函数的取样
【youcans 的 OpenCV 例程200篇】72. 一维离散傅里叶变换
【youcans 的 OpenCV 例程200篇】73. 二维连续傅里叶变换
【youcans 的 OpenCV 例程200篇】74. 图像的抗混叠
【youcans 的 OpenCV 例程200篇】75. Numpy 实现图像傅里叶变换
【youcans 的 OpenCV 例程200篇】76. OpenCV 实现图像傅里叶变换
【youcans 的 OpenCV 例程200篇】77. OpenCV 实现快速傅里叶变换
【youcans 的 OpenCV 例程200篇】78. 频率域图像滤波基础
【youcans 的 OpenCV 例程200篇】79. 频率域图像滤波的基本步骤
【youcans 的 OpenCV 例程200篇】80. 频率域图像滤波详细步骤
【youcans 的 OpenCV 例程200篇】81. 频率域高斯低通滤波器
【youcans 的 OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器
【youcans 的 OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复
【youcans 的 OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器
【youcans 的 OpenCV 例程200篇】85. 频率域高通滤波器的应用
【youcans 的 OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理
【youcans 的 OpenCV 例程200篇】87. 频率域钝化掩蔽
【youcans 的 OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波
【youcans 的 OpenCV 例程200篇】89. 带阻滤波器的传递函数
【youcans 的 OpenCV 例程200篇】90. 频率域陷波滤波器
【youcans 的 OpenCV 例程200篇】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【youcans 的 OpenCV 例程200篇】92. 指数噪声、均匀噪声、椒盐噪声
【youcans 的 OpenCV 例程200篇】93. 噪声模型的直方图
【youcans 的 OpenCV 例程200篇】94. 算术平均滤波器
【youcans 的 OpenCV 例程200篇】95. 几何均值滤波器
【youcans 的 OpenCV 例程200篇】96. 谐波平均滤波器
【youcans 的 OpenCV 例程200篇】97. 反谐波平均滤波器
【youcans 的 OpenCV 例程200篇】98. 统计排序滤波器
【youcans 的 OpenCV 例程200篇】99. 修正阿尔法均值滤波器
【youcans 的 OpenCV 例程200篇】100. 自适应局部降噪滤波器
【youcans 的 OpenCV 例程200篇】101. 自适应中值滤波器
【youcans 的 OpenCV 例程200篇】102. 陷波带阻滤波器的传递函数
【youcans 的 OpenCV 例程200篇】103. 陷波带阻滤波器消除周期噪声干扰
【youcans 的 OpenCV 例程200篇】104. 运动模糊退化模型
【youcans 的 OpenCV 例程200篇】105. 湍流模糊退化模型
【youcans 的 OpenCV 例程200篇】106. 退化图像的逆滤波
【youcans 的 OpenCV 例程200篇】107. 退化图像的维纳滤波
【youcans 的 OpenCV 例程200篇】108. 约束最小二乘方滤波
【youcans 的 OpenCV 例程200篇】109. 几何均值滤波
【youcans 的 OpenCV 例程200篇】110. 投影和雷登变换
【youcans 的 OpenCV 例程200篇】111. 雷登变换反投影重建图像
【youcans 的 OpenCV 例程200篇】112. 滤波反投影重建图像
【youcans 的 OpenCV 例程200篇】113. 形态学操作之腐蚀
【youcans 的 OpenCV 例程200篇】114. 形态学操作之膨胀
【youcans 的 OpenCV 例程200篇】115. 形态学操作之开运算
【youcans 的 OpenCV 例程200篇】116. 形态学操作之闭运算
【youcans 的 OpenCV 例程200篇】117. 形态学操作之顶帽运算
【youcans 的 OpenCV 例程200篇】118. 形态学操作之底帽运算
【youcans 的 OpenCV 例程200篇】119. 图像的形态学梯度
【youcans 的 OpenCV 例程200篇】120. 击中-击不中变换
【youcans 的 OpenCV 例程200篇】121. 击中-击不中用于特征识别
【youcans 的 OpenCV 例程200篇】122. 形态算法之边界提取
【youcans 的 OpenCV 例程200篇】123. 形态算法之孔洞填充
【youcans 的 OpenCV 例程200篇】124. 孔洞填充的泛洪算法
【youcans 的 OpenCV 例程200篇】125. 形态算法之提取连通分量

以上是关于youcans 的 OpenCV 例程200篇125. 形态算法之提取连通分量的主要内容,如果未能解决你的问题,请参考以下文章

youcans 的 OpenCV 例程200篇183.基于轮廓标记的分水岭算法

youcans 的 OpenCV 例程200篇182.基于形态学梯度的分水岭算法

youcans 的 OpenCV 例程200篇结束语

youcans的OpenCV例程200篇总目录

youcans 的 OpenCV 例程200篇179.图像分割之 GrabCut 图割法(掩模图像)

youcans 的 OpenCV 例程200篇201. 图像的颜色空间转换