iOS 即时通讯,从入门到 “放弃”?

Posted qigemingnan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了iOS 即时通讯,从入门到 “放弃”?相关的知识,希望对你有一定的参考价值。

本文会用实例的方式,将 ios 各种 IM 的方案都简单的实现一遍。并且提供一些选型、实现细节以及优化的建议。 —— 由宇朋Look分享
前言
  • 本文会用实例的方式,将iOS各种IM的方案都简单的实现一遍。并且提供一些选型、实现细节以及优化的建议。

  • 注:文中的所有的代码示例,在github中都有demo:
    iOS即时通讯,从入门到“放弃”?(demo)
    可以打开项目先预览效果,对照着进行阅读。

言归正传,首先我们来总结一下我们去实现IM的方式

第一种方式,使用第三方IM服务

对于短平快的公司,完全可以采用第三方SDK来实现。国内IM的第三方服务商有很多,类似云信、环信、融云、LeanCloud,当然还有其它的很多,这里就不一一举例了,感兴趣的小伙伴可以自行查阅下。

  • 第三方服务商IM底层协议基本上都是TCP。他们的IM方案很成熟,有了它们,我们甚至不需要自己去搭建IM后台,什么都不需要去考虑。
    如果你足够懒,甚至连UI都不需要自己做,这些第三方有各自一套IM的UI,拿来就可以直接用。真可谓3分钟集成...
  • 但是缺点也很明显,定制化程度太高,很多东西我们不可控。当然还有一个最最重要的一点,就是太贵了...作为真正社交为主打的APP,仅此一点,就足以让我们望而却步。当然,如果IM对于APP只是一个辅助功能,那么用第三方服务也无可厚非。
另外一种方式,我们自己去实现

我们自己去实现也有很多选择:
1)首先面临的就是传输协议的选择,TCP还是UDP
2)其次是我们需要去选择使用哪种聊天协议:

  • 基于Scoket或者WebScoket或者其他的私有协议、
  • MQTT
  • 还是广为人诟病的XMPP?

3)我们是自己去基于OS底层Socket进行封装还是在第三方框架的基础上进行封装?
4)传输数据的格式,我们是用Json、还是XML、还是谷歌推出的ProtocolBuffer
5)我们还有一些细节问题需要考虑,例如TCP的长连接如何保持,心跳机制,Qos机制,重连机制等等...当然,除此之外,我们还有一些安全问题需要考虑。

一、传输协议的选择

接下来我们可能需要自己考虑去实现IM,首先从传输层协议来说,我们有两种选择:TCP or UDP


这个问题已经被讨论过无数次了,对深层次的细节感兴趣的朋友可以看看这篇文章:

  • 移动端IM/推送系统的协议选型:UDP还是TCP?

    这里我们直接说结论吧:对于小公司或者技术不那么成熟的公司,IM一定要用TCP来实现,因为如果你要用UDP的话,需要做的事太多。当然QQ就是用的UDP协议,当然不仅仅是UDP,腾讯还用了自己的私有协议,来保证了传输的可靠性,杜绝了UDP下各种数据丢包,乱序等等一系列问题。
    总之一句话,如果你觉得团队技术很成熟,那么你用UDP也行,否则还是用TCP为好。

二、我们来看看各种聊天协议

首先我们以实现方式来切入,基本上有以下四种实现方式:

  1. 基于Scoket原生:代表框架 CocoaAsyncSocket
  2. 基于WebScoket:代表框架 SocketRocket
  3. 基于MQTT:代表框架 MQTTKit
  4. 基于XMPP:代表框架 XMPPFramework

当然,以上四种方式我们都可以不使用第三方框架,直接基于OS底层Scoket去实现我们的自定义封装。下面我会给出一个基于Scoket原生而不使用框架的例子,供大家参考一下。

首先需要搞清楚的是,其中MQTTXMPP为聊天协议,它们是最上层的协议,而WebScoket是传输通讯协议,它是基于Socket封装的一个协议。而通常我们所说的腾讯IM的私有协议,就是基于WebScoket或者Scoket原生进行封装的一个聊天协议。

具体这3种聊天协议的对比优劣如下:


协议优劣对比.png

所以说到底,iOS要做一个真正的IM产品,一般都是基于Scoket或者WebScoket等,再之上加上一些私有协议来保证的。

1.我们先不使用任何框架,直接用OS底层Socket来实现一个简单的IM。

我们客户端的实现思路也是很简单,创建Socket,和服务器的Socket对接上,然后开始传输数据就可以了。

  • 我们学过c/c++或者java这些语言,我们就知道,往往任何教程,最后一章都是讲Socket编程,而Socket是什么呢,简单的来说,就是我们使用TCP/IP 或者UDP/IP协议的一组编程接口。如下图所示:

    我们在应用层,使用socket,轻易的实现了进程之间的通信(跨网络的)。想想,如果没有socket,我们要直面TCP/IP协议,我们需要去写多少繁琐而又重复的代码。

    如果有对socket概念仍然有所困惑的,可以看看这篇文章:
    从问题看本质,socket到底是什么?
    但是这篇文章关于并发连接数的认识是错误的,正确的认识可以看看这篇文章:
    单台服务器并发TCP连接数到底可以有多少

我们接着可以开始着手去实现IM了,首先我们不基于任何框架,直接去调用OS底层-基于C的BSD Socket去实现,它提供了这样一组接口:

//socket 创建并初始化 socket,返回该 socket 的文件描述符,如果描述符为 -1 表示创建失败。
int socket(int addressFamily, int type,int protocol)
//关闭socket连接
int close(int socketFileDescriptor)
//将 socket 与特定主机地址与端口号绑定,成功绑定返回0,失败返回 -1。
int bind(int socketFileDescriptor,sockaddr *addressToBind,int addressStructLength)
//接受客户端连接请求并将客户端的网络地址信息保存到 clientAddress 中。
int accept(int socketFileDescriptor,sockaddr *clientAddress, int clientAddressStructLength)
//客户端向特定网络地址的服务器发送连接请求,连接成功返回0,失败返回 -1。
int connect(int socketFileDescriptor,sockaddr *serverAddress, int serverAddressLength)
//使用 DNS 查找特定主机名字对应的 IP 地址。如果找不到对应的 IP 地址则返回 NULL。
hostent* gethostbyname(char *hostname)
//通过 socket 发送数据,发送成功返回成功发送的字节数,否则返回 -1。
int send(int socketFileDescriptor, char *buffer, int bufferLength, int flags)
//从 socket 中读取数据,读取成功返回成功读取的字节数,否则返回 -1。
int receive(int socketFileDescriptor,char *buffer, int bufferLength, int flags)
//通过UDP socket 发送数据到特定的网络地址,发送成功返回成功发送的字节数,否则返回 -1。
int sendto(int socketFileDescriptor,char *buffer, int bufferLength, int flags, sockaddr *destinationAddress, int destinationAddressLength)
//从UDP socket 中读取数据,并保存发送者的网络地址信息,读取成功返回成功读取的字节数,否则返回 -1 。
int recvfrom(int socketFileDescriptor,char *buffer, int bufferLength, int flags, sockaddr *fromAddress, int *fromAddressLength)

让我们可以对socket进行各种操作,首先我们来用它写个客户端。总结一下,简单的IM客户端需要做如下4件事:

  1. 客户端调用 socket(...) 创建socket;
  2. 客户端调用 connect(...) 向服务器发起连接请求以建立连接;
  3. 客户端与服务器建立连接之后,就可以通过send(...)/receive(...)向客户端发送或从客户端接收数据;
  4. 客户端调用 close 关闭 socket;

根据上面4条大纲,我们封装了一个名为TYHSocketManager的单例,来对socket相关方法进行调用:

TYHSocketManager.h

#import <Foundation/Foundation.h>

@interface TYHSocketManager : NSObject
+ (instancetype)share;
- (void)connect;
- (void)disConnect;
- (void)sendMsg:(NSString *)msg;
@end

TYHSocketManager.m

#import "TYHSocketManager.h"

#import <sys/types.h>
#import <sys/socket.h>
#import <netinet/in.h>
#import <arpa/inet.h>

@interface TYHSocketManager()

@property (nonatomic,assign)int clientScoket;

@end

@implementation TYHSocketManager

+ (instancetype)share
{
    static dispatch_once_t onceToken;
    static TYHSocketManager *instance = nil;
    dispatch_once(&onceToken, ^{
        instance = [[self alloc]init];
        [instance initScoket];
        [instance pullMsg];
    });
    return instance;
}

- (void)initScoket
{
    //每次连接前,先断开连接
    if (_clientScoket != 0) {
        [self disConnect];
        _clientScoket = 0;
    }

    //创建客户端socket
    _clientScoket = CreateClinetSocket();

    //服务器Ip
    const char * server_ip="127.0.0.1";
    //服务器端口
    short server_port=6969;
    //等于0说明连接失败
    if (ConnectionToServer(_clientScoket,server_ip, server_port)==0) {
        printf("Connect to server error\\n");
        return ;
    }
    //走到这说明连接成功
    printf("Connect to server ok\\n");
}

static int CreateClinetSocket()
{
    int ClinetSocket = 0;
    //创建一个socket,返回值为Int。(注scoket其实就是Int类型)
    //第一个参数addressFamily IPv4(AF_INET) 或 IPv6(AF_INET6)。
    //第二个参数 type 表示 socket 的类型,通常是流stream(SOCK_STREAM) 或数据报文datagram(SOCK_DGRAM)
    //第三个参数 protocol 参数通常设置为0,以便让系统自动为选择我们合适的协议,对于 stream socket 来说会是 TCP 协议(IPPROTO_TCP),而对于 datagram来说会是 UDP 协议(IPPROTO_UDP)。
    ClinetSocket = socket(AF_INET, SOCK_STREAM, 0);
    return ClinetSocket;
}
static int ConnectionToServer(int client_socket,const char * server_ip,unsigned short port)
{

    //生成一个sockaddr_in类型结构体
    struct sockaddr_in sAddr={0};
    sAddr.sin_len=sizeof(sAddr);
    //设置IPv4
    sAddr.sin_family=AF_INET;

    //inet_aton是一个改进的方法来将一个字符串IP地址转换为一个32位的网络序列IP地址
    //如果这个函数成功,函数的返回值非零,如果输入地址不正确则会返回零。
    inet_aton(server_ip, &sAddr.sin_addr);

    //htons是将整型变量从主机字节顺序转变成网络字节顺序,赋值端口号
    sAddr.sin_port=htons(port);

    //用scoket和服务端地址,发起连接。
    //客户端向特定网络地址的服务器发送连接请求,连接成功返回0,失败返回 -1。
    //注意:该接口调用会阻塞当前线程,直到服务器返回。
    if (connect(client_socket, (struct sockaddr *)&sAddr, sizeof(sAddr))==0) {
        return client_socket;
    }
    return 0;
}

#pragma mark - 新线程来接收消息

- (void)pullMsg
{
    NSThread *thread = [[NSThread alloc]initWithTarget:self selector:@selector(recieveAction) object:nil];
    [thread start];
}

#pragma mark - 对外逻辑

- (void)connect
{
    [self initScoket];
}
- (void)disConnect
{
    //关闭连接
    close(self.clientScoket);
}

//发送消息
- (void)sendMsg:(NSString *)msg
{

    const char *send_Message = [msg UTF8String];
    send(self.clientScoket,send_Message,strlen(send_Message)+1,0);

}

//收取服务端发送的消息
- (void)recieveAction{
    while (1) {
        char recv_Message[1024] = {0};
        recv(self.clientScoket, recv_Message, sizeof(recv_Message), 0);
        printf("%s\\n",recv_Message);
    }
}

如上所示:

  • 我们调用了initScoket方法,利用CreateClinetSocket方法了一个scoket,就是就是调用了socket函数:
    ClinetSocket = socket(AF_INET, SOCK_STREAM, 0);
  • 然后调用了ConnectionToServer函数与服务器连接,IP地址为127.0.0.1也就是本机localhost和端口6969相连。在该函数中,我们绑定了一个sockaddr_in类型的结构体,该结构体内容如下:

    struct sockaddr_in {
      __uint8_t    sin_len;
      sa_family_t    sin_family;
      in_port_t    sin_port;
      struct    in_addr sin_addr;
      char        sin_zero[8];
    };

    里面包含了一些,我们需要连接的服务端的scoket的一些基本参数,具体赋值细节可以见注释。

  • 连接成功之后,我们就可以调用send函数和recv函数进行消息收发了,在这里,我新开辟了一个常驻线程,在这个线程中一个死循环里去不停的调用recv函数,这样服务端有消息发送过来,第一时间便能被接收到。

就这样客户端便简单的可以用了,接着我们来看看服务端的实现。

一样,我们首先对服务端需要做的工作简单的总结下:
  1. 服务器调用 socket(...) 创建socket;
  2. 服务器调用 listen(...) 设置缓冲区;
  3. 服务器通过 accept(...)接受客户端请求建立连接;
  4. 服务器与客户端建立连接之后,就可以通过 send(...)/receive(...)向客户端发送或从客户端接收数据;
  5. 服务器调用 close 关闭 socket;
接着我们就可以具体去实现了

OS底层的函数是支持我们去实现服务端的,但是我们一般不会用iOS去这么做(试问真正的应用场景,有谁用iOSscoket服务器么...),如果还是想用这些函数去实现服务端,可以参考下这篇文章: 深入浅出Cocoa-iOS网络编程之Socket

在这里我用node.js去搭了一个简单的scoket服务器。源码如下:

var net = require(\'net\');  
var HOST = \'127.0.0.1\';  
var PORT = 6969;  

// 创建一个TCP服务器实例,调用listen函数开始监听指定端口  
// 传入net.createServer()的回调函数将作为”connection“事件的处理函数  
// 在每一个“connection”事件中,该回调函数接收到的socket对象是唯一的  
net.createServer(function(sock) {  

    // 我们获得一个连接 - 该连接自动关联一个socket对象  
    console.log(\'CONNECTED: \' +  
        sock.remoteAddress + \':\' + sock.remotePort);  
        sock.write(\'服务端发出:连接成功\');  

    // 为这个socket实例添加一个"data"事件处理函数  
    sock.on(\'data\', function(data) {  
        console.log(\'DATA \' + sock.remoteAddress + \': \' + data);  
        // 回发该数据,客户端将收到来自服务端的数据  
        sock.write(\'You said "\' + data + \'"\');  
    });  
    // 为这个socket实例添加一个"close"事件处理函数  
    sock.on(\'close\', function(data) {  
        console.log(\'CLOSED: \' +  
        sock.remoteAddress + \' \' + sock.remotePort);  
    });  

}).listen(PORT, HOST);  

console.log(\'Server listening on \' + HOST +\':\'+ PORT);

看到这不懂node.js的朋友也不用着急,在这里你可以使用任意语言c/c++/java/oc等等去实现后台,这里node.js仅仅是楼主的一个选择,为了让我们来验证之前写的客户端scoket的效果。如果你不懂node.js也没关系,你只需要把上述楼主写的相关代码复制粘贴,如果你本机有node的解释器,那么直接在终端进入该源代码文件目录中输入:

node fileName

即可运行该脚本(fileName为保存源代码的文件名)。

我们来看看运行效果:


handle2.gif


服务器运行起来了,并且监听着6969端口。
接着我们用之前写的iOS端的例子。客户端打印显示连接成功,而我们运行的服务器也打印了连接成功。接着我们发了一条消息,服务端成功的接收到了消息后,把该消息再发送回客户端,绕了一圈客户端又收到了这条消息。至此我们用OS底层scoket实现了简单的IM。

大家看到这是不是觉得太过简单了?
当然简单,我们仅仅是实现了Scoket的连接,信息的发送与接收,除此之外我们什么都没有做,现实中,我们需要做的处理远不止于此,我们先接着往下看。接下来,我们就一起看看第三方框架是如何实现IM的。


分割图.png
2.我们接着来看看基于Socket原生的CocoaAsyncSocket:

这个框架实现了两种传输协议TCPUDP,分别对应GCDAsyncSocket类和GCDAsyncUdpSocket,这里我们重点讲GCDAsyncSocket

这里Socket服务器延续上一个例子,因为同样是基于原生Scoket的框架,所以之前的Node.js的服务端,该例仍然试用。这里我们就只需要去封装客户端的实例,我们还是创建一个TYHSocketManager单例。

TYHSocketManager.h

#import <Foundation/Foundation.h>

@interface TYHSocketManager : NSObject

+ (instancetype)share;

- (BOOL)connect;
- (void)disConnect;

- (void)sendMsg:(NSString *)msg;
- (void)pullTheMsg;
@end

TYHSocketManager.m

#import "TYHSocketManager.h"
#import "GCDAsyncSocket.h" // for TCP

static  NSString * Khost = @"127.0.0.1";
static const uint16_t Kport = 6969;

@interface TYHSocketManager()<GCDAsyncSocketDelegate>
{
    GCDAsyncSocket *gcdSocket;
}

@end

@implementation TYHSocketManager

+ (instancetype)share
{
    static dispatch_once_t onceToken;
    static TYHSocketManager *instance = nil;
    dispatch_once(&onceToken, ^{
        instance = [[self alloc]init];
        [instance initSocket];
    });
    return instance;
}

- (void)initSocket
{
    gcdSocket = [[GCDAsyncSocket alloc] initWithDelegate:self delegateQueue:dispatch_get_main_queue()];

}

#pragma mark - 对外的一些接口

//建立连接
- (BOOL)connect
{
    return  [gcdSocket connectToHost:Khost onPort:Kport error:nil];
}

//断开连接
- (void)disConnect
{
    [gcdSocket disconnect];
}


//发送消息
- (void)sendMsg:(NSString *)msg

{
    NSData *data  = [msg dataUsingEncoding:NSUTF8StringEncoding];
    //第二个参数,请求超时时间
    [gcdSocket writeData:data withTimeout:-1 tag:110];

}

//监听最新的消息
- (void)pullTheMsg
{
    //监听读数据的代理  -1永远监听,不超时,但是只收一次消息,
    //所以每次接受到消息还得调用一次
    [gcdSocket readDataWithTimeout:-1 tag:110];

}

#pragma mark - GCDAsyncSocketDelegate
//连接成功调用
- (void)socket:(GCDAsyncSocket *)sock didConnectToHost:(NSString *)host port:(uint16_t)port
{
    NSLog(@"连接成功,host:%@,port:%d",host,port);

    [self pullTheMsg];

    //心跳写在这...
}

//断开连接的时候调用
- (void)socketDidDisconnect:(GCDAsyncSocket *)sock withError:(nullable NSError *)err
{
    NSLog(@"断开连接,host:%@,port:%d",sock.localHost,sock.localPort);

    //断线重连写在这...

}

//写成功的回调
- (void)socket:(GCDAsyncSocket*)sock didWriteDataWithTag:(long)tag
{
//    NSLog(@"写的回调,tag:%ld",tag);
}

//收到消息的回调
- (void)socket:(GCDAsyncSocket *)sock didReadData:(NSData *)data withTag:(long)tag
{

    NSString *msg = [[NSString alloc]initWithData:data encoding:NSUTF8StringEncoding];
    NSLog(@"收到消息:%@",msg);

    [self pullTheMsg];
}

//分段去获取消息的回调
//- (void)socket:(GCDAsyncSocket *)sock didReadPartialDataOfLength:(NSUInteger)partialLength tag:(long)tag
//{
//    
//    NSLog(@"读的回调,length:%ld,tag:%ld",partialLength,tag);
//
//}

//为上一次设置的读取数据代理续时 (如果设置超时为-1,则永远不会调用到)
//-(NSTimeInterval)socket:(GCDAsyncSocket *)sock shouldTimeoutReadWithTag:(long)tag elapsed:(NSTimeInterval)elapsed bytesDone:(NSUInteger)length
//{
//    NSLog(@"来延时,tag:%ld,elapsed:%f,length:%ld",tag,elapsed,length);
//    return 10;
//}

@end

这个框架使用起来也十分简单,它基于Scoket往上进行了一层封装,提供了OC的接口给我们使用。至于使用方法,大家看看注释应该就能明白,这里唯一需要说的一点就是这个方法:

[gcdSocket readDataWithTimeout:-1 tag:110];

这个方法的作用就是去读取当前消息队列中的未读消息。记住,这里不调用这个方法,消息回调的代理是永远不会被触发的。而且必须是tag相同,如果tag不同,这个收到消息的代理也不会被处罚。
我们调用一次这个方法,只能触发一次读取消息的代理,如果我们调用的时候没有未读消息,它就会等在那,直到消息来了被触发。一旦被触发一次代理后,我们必须再次调用这个方法,否则,之后的消息到了仍旧无法触发我们读取消息的代理。就像我们在例子中使用的那样,在每次读取到消息之后我们都去调用:

//收到消息的回调
- (void)socket:(GCDAsyncSocket *)sock didReadData:(NSData *)data withTag:(long)tag
{
    NSString *msg = [[NSString alloc]initWithData:data encoding:NSUTF8StringEncoding];
    NSLog(@"收到消息:%@",msg);
    [self pullTheMsg];
}
//监听最新的消息
- (void)pullTheMsg
{
    //监听读数据的代理,只能监听10秒,10秒过后调用代理方法  -1永远监听,不超时,但是只收一次消息,
    //所以每次接受到消息还得调用一次
    [gcdSocket readDataWithTimeout:-1 tag:110];

}

除此之外,我们还需要说的是这个超时timeout
这里如果设置10秒,那么就只能监听10秒,10秒过后调用是否续时的代理方法:

-(NSTimeInterval)socket:(GCDAsyncSocket *)sock shouldTimeoutReadWithTag:(long)tag elapsed:(NSTimeInterval)elapsed bytesDone:(NSUInteger)length

如果我们选择不续时,那么10秒到了还没收到消息,那么Scoket会自动断开连接。看到这里有些小伙伴要吐槽了,怎么一个方法设计的这么麻烦,当然这里这么设计是有它的应用场景的,我们后面再来细讲。

我们同样来运行看看效果:

handle3.gif

至此我们也用CocoaAsyncSocket这个框架实现了一个简单的IM。


分割图.png
3.接着我们继续来看看基于webScoket的IM:

这个例子我们会把心跳,断线重连,以及PingPong机制进行简单的封装,所以我们先来谈谈这三个概念:

首先我们来谈谈什么是心跳

简单的来说,心跳就是用来检测TCP连接的双方是否可用。那又会有人要问了,TCP不是本身就自带一个KeepAlive机制吗?
这里我们需要说明的是TCP的KeepAlive机制只能保证连接的存在,但是并不能保证客户端以及服务端的可用性.比如会有以下一种情况:

某台服务器因为某些原因导致负载超高,CPU 100%,无法响应任何业务请求,但是使用 TCP 探针则仍旧能够确定连接状态,这就是典型的连接活着但业务提供方已死的状态。

这个时候心跳机制就起到作用了:

  • 我们客户端发起心跳Ping(一般都是客户端),假如设置在10秒后如果没有收到回调,那么说明服务器或者客户端某一方出现问题,这时候我们需要主动断开连接。
  • 服务端也是一样,会维护一个socket的心跳间隔,当约定时间内,没有收到客户端发来的心跳,我们会知道该连接已经失效,然后主动断开连接。

参考文章:为什么说基于TCP的移动端IM仍然需要心跳保活?

其实做过IM的小伙伴们都知道,我们真正需要心跳机制的原因其实主要是在于国内运营商NAT超时。

那么究竟什么是NAT超时呢?

原来这是因为IPV4引起的,我们上网很可能会处在一个NAT设备(无线路由器之类)之后。
NAT设备会在IP封包通过设备时修改源/目的IP地址. 对于家用路由器来说, 使用的是网络地址端口转换(NAPT), 它不仅改IP, 还修改TCP和UDP协议的端口号, 这样就能让内网中的设备共用同一个外网IP. 举个例子, NAPT维护一个类似下表的NAT表:


NAT映射


NAT设备会根据NAT表对出去和进来的数据做修改, 比如将192.168.0.3:8888发出去的封包改成120.132.92.21:9202, 外部就认为他们是在和120.132.92.21:9202通信. 同时NAT设备会将120.132.92.21:9202收到的封包的IP和端口改成192.168.0.3:8888, 再发给内网的主机, 这样内部和外部就能双向通信了, 但如果其中192.168.0.3:8888== 120.132.92.21:9202这一映射因为某些原因被NAT设备淘汰了, 那么外部设备就无法直接与192.168.0.3:8888通信了。

我们的设备经常是处在NAT设备的后面, 比如在大学里的校园网, 查一下自己分配到的IP, 其实是内网IP, 表明我们在NAT设备后面, 如果我们在寝室再接个路由器, 那么我们发出的数据包会多经过一次NAT.

国内移动无线网络运营商在链路上一段时间内没有数据通讯后, 会淘汰NAT表中的对应项, 造成链路中断。

而国内的运营商一般NAT超时的时间为5分钟,所以通常我们心跳设置的时间间隔为3-5分钟。

接着我们来讲讲PingPong机制:

很多小伙伴可能又会感觉到疑惑了,那么我们在这心跳间隔的3-5分钟如果连接假在线(例如在地铁电梯这种环境下)。那么我们岂不是无法保证消息的即时性么?这显然是我们无法接受的,所以业内的解决方案是采用双向的PingPong机制。

当服务端发出一个Ping,客户端没有在约定的时间内返回响应的ack,则认为客户端已经不在线,这时我们Server端会主动断开Scoket连接,并且改由APNS推送的方式发送消息。
同样的是,当客户端去发送一个消息,因为我们迟迟无法收到服务端的响应ack包,则表明客户端或者服务端已不在线,我们也会显示消息发送失败,并且断开Scoket连接。

还记得我们之前CocoaSyncSockt的例子所讲的获取消息超时就断开吗?其实它就是一个PingPong机制的客户端实现。我们每次可以在发送消息成功后,调用这个超时读取的方法,如果一段时间没收到服务器的响应,那么说明连接不可用,则断开Scoket连接

最后就是重连机制:

理论上,我们自己主动去断开的Scoket连接(例如退出账号,APP退出到后台等等),不需要重连。其他的连接断开,我们都需要进行断线重连。
一般解决方案是尝试重连几次,如果仍旧无法重连成功,那么不再进行重连。
接下来的WebScoket的例子,我会封装一个重连时间指数级增长的一个重连方式,可以作为一个参考。

言归正传,我们看完上述三个概念之后,我们来讲一个WebScoket最具代表性的一个第三方框架SocketRocket

我们首先来看看它对外封装的一些方法:

@interface SRWebSocket : NSObject <NSStreamDelegate>

@property (nonatomic, weak) id <SRWebSocketDelegate> delegate;

@property (nonatomic, readonly) SRReadyState readyState;
@property (nonatomic, readonly, retain) NSURL *url;


@property (nonatomic, readonly) CFHTTPMessageRef receivedHTTPHeaders;

// Optional array of cookies (NSHTTPCookie objects) to apply to the connections
@property (nonatomic, readwrite) NSArray * requestCookies;

// This returns the negotiated protocol.
// It will be nil until after the handshake completes.
@property (nonatomic, readonly, copy) NSString *protocol;

// Protocols should be an array of strings that turn into Sec-WebSocket-Protocol.
- (id)initWithURLRequest:(NSURLRequest *)request protocols:(NSArray *)protocols allowsUntrustedSSLCertificates:(BOOL)allowsUntrustedSSLCertificates;
- (id)initWithURLRequest:(NSURLRequest *)request protocols:(NSArray *)protocols;
- (id)initWithURLRequest:(NSURLRequest *)request;

// Some helper constructors.
- (id)initWithURL:(NSURL *)url protocols:(NSArray *)protocols allowsUntrustedSSLCertificates:(BOOL)allowsUntrustedSSLCertificates;
- (id)initWithURL:(NSURL *)url protocols:(NSArray *)protocols;
- (id)initWithURL:(NSURL *)url;

// Delegate queue will be dispatch_main_queue by default.
// You cannot set both OperationQueue and dispatch_queue.
- (void)setDelegateOperationQueue:(NSOperationQueue*) queue;
- (void)setDelegateDispatchQueue:(dispatch_queue_t) queue;

// By default, it will schedule itself on +[NSRunLoop SR_networkRunLoop] using defaultModes.
- (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode;
- (void)unscheduleFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode;

// SRWebSockets are intended for one-time-use only.  Open should be called once and only once.
- (void)open;

- (void)close;
- (void)closeWithCode:(NSInteger)code reason:(NSString *)reason;

// Send a UTF8 String or Data.
- (void)send:(id)data;

// Send Data (can be nil) in a ping message.
- (void)sendPing:(NSData *)data;

@end

#pragma mark - SRWebSocketDelegate

@protocol SRWebSocketDelegate <NSObject>

// message will either be an NSString if the server is using text
// or NSData if the server is using binary.
- (void)webSocket:(SRWebSocket *)webSocket didReceiveMessage:(id)message;

@optional

- (void)webSocketDidOpen:(SRWebSocket *)webSocket;
- (void)webSocket:(SRWebSocket *)webSocket didFailWithError:(NSError *)error;
- (void)webSocket:(SRWebSocket *)webSocket didCloseWithCode:(NSInteger)code reason:(NSString *)reason wasClean:(BOOL)wasClean;
- (void)webSocket:(SRWebSocket *)webSocket didReceivePong:(NSData *)pongPayload;

// Return YES to convert messages sent as Text to an NSString. Return NO to skip NSData -> NSString conversion for Text messages. Defaults to YES.
- (BOOL)webSocketShouldConvertTextFrameToString:(SRWebSocket *)webSocket;

@end

方法也很简单,分为两个部分:

  • 一部分为SRWebSocket的初始化,以及连接,关闭连接,发送消息等方法。
  • 另一部分为SRWebSocketDelegate,其中包括一些回调:
    收到消息的回调,连接失败的回调,关闭连接的回调,收到pong的回调,是否需要把data消息转换成string的代理方法。
接着我们还是举个例子来实现以下,首先来封装一个TYHSocketManager单例:

TYHSocketManager.h

#import <Foundation/Foundation.h>

typedef enum : NSUInteger {
    disConnectByUser ,
    disConnectByServer,
} DisConnectType;


@interface TYHSocketManager : NSObject

+ (instancetype)share;

- (void)connect;
- (void)disConnect;

- (void)sendMsg:(NSString *)msg;

- (void)ping;

@end

TYHSocketManager.m

#import "TYHSocketManager.h"
#import "SocketRocket.h"

#define dispatch_main_async_safe(block)\\
    if ([NSThread isMainThread]) {\\
        block();\\
    } else {\\
        dispatch_async(dispatch_get_main_queue(), block);\\
    }

static  NSString * Khost = @"127.0.0.1";
static const uint16_t Kport = 6969;


@interface TYHSocketManager()<SRWebSocketDelegate>
{
    SRWebSocket *webSocket;
    NSTimer *heartBeat;
    NSTimeInterval reConnectTime;

}

@end

@implementation TYHSocketManager

+ (instancetype)share
{
    static dispatch_once_t onceToken;
    static TYHSocketManager *instance = nil;
    dispatch_once(&onceToken, ^{
        instance = [[self alloc]init];
        [instance initSocket];
    });
    return instance;
}

//初始化连接
- (void)initSocket
{
    if (webSocket) {
        return;
    }


    webSocket = [[SRWebSocket alloc]initWithURL:[NSURL URLWithString:[NSString stringWithFormat:@"ws://%@:%d", Khost, Kport]]];

    webSocket.delegate = self;

    //设置代理线程queue
    NSOperationQueue *queue = [[NSOperationQueue alloc]init];
    queue.maxConcurrentOperationCount = 1;

    [webSocket setDelegateOperationQueue:queue];

    //连接
    [webSocket open];


}

//初始化心跳
- (void)initHeartBeat
{

    dispatch_main_async_safe(^{

        [self destoryHeartBeat];

        __weak typeof(self) weakSelf = self;
        //心跳设置为3分钟,NAT超时一般为5分钟
        heartBeat = [NSTimer scheduledTimerWithTimeInterval:3*60 repeats:YES block:^(NSTimer * _Nonnull timer) {
            NSLog(@"heart");
            //和服务端约定好发送什么作为心跳标识,尽可能的减小心跳包大小
            [weakSelf sendMsg:@"heart"];
        }];
        [[NSRunLoop currentRunLoop]addTimer:heartBeat forMode:NSRunLoopCommonModes];
    })

}

//取消心跳
- (void)destoryHeartBeat
{
    dispatch_main_async_safe(^{
        if (heartBeat) {
            [heartBeat invalidate];
            heartBeat = nil;
        }
    })

}


#pragma mark - 对外的一些接口

//建立连接
- (void)connect
{
    [self initSocket];

    //每次正常连接的时候清零重连时间
    reConnectTime = 0;
}

//断开连接
- (void)disConnect
{

    if (webSocket) {
        [webSocket close];
        webSocket = nil;
    }
}


//发送消息
- (void)sendMsg:(NSString *)msg
{
    [webSocket send:msg];

}

//重连机制
- (void)reConnect
{
    [self disConnect];

    //超过一分钟就不再重连 所以只会重连5次 2^5 = 64
    if (reConnectTime > 64) {
        return;
    }

    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(reConnectTime * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        webSocket = nil;
        [self initSocket];
    });


    //重连时间2的指数

以上是关于iOS 即时通讯,从入门到 “放弃”?的主要内容,如果未能解决你的问题,请参考以下文章

IM即时通讯开发WebSocket从入门到精通

即时通讯开发之Netty入门长文

开源即时通讯IM框架MobileIMSDK的微信小程序端开发快速入门

如何从一组中继容器中组合片段?

iOS即时通讯SDK中,腾讯,网易,环信,融云IM SDK对比,哪个更好

即时通讯(文字,图片,视频)包括坐席调度排队系统初步理解