MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)
Posted Huterox
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)相关的知识,希望对你有一定的参考价值。
文章目录
前言
冒个泡,年少无知吹完的牛皮是要还的呀。
那么这里的话要做的一个东西就是一个人体的姿态判断,比如一个人是坐着还是站着还是摔倒了,如果摔倒了我们要做什么操作,之类的。
不过这里比较可惜的就是这个midiapipe 它里面的Pose的话是只有一个pose的也就是单目标的一个检测,所以距离我想要的一个效果是很难受的,不过这个dome还是挺好玩的。
实现效果如下:
Midiapipe关键点检测
这个dome的核心之一,就是这个检测到人体的一个关键点,
import time
from collections import deque
import cv2
import numpy as np
import mediapipe as mp
from stgcn.stgcn import STGCN
from PIL import Image, ImageDraw, ImageFont
# 人体关键点检测模块
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
# 人脸模块
mpFace = mp.solutions.face_detection
faceDetection = mpFace.FaceDetection(min_detection_confidence=0.5)
KEY_JOINTS = [
mp_pose.PoseLandmark.NOSE,
mp_pose.PoseLandmark.LEFT_SHOULDER,
mp_pose.PoseLandmark.RIGHT_SHOULDER,
mp_pose.PoseLandmark.LEFT_ELBOW,
mp_pose.PoseLandmark.RIGHT_ELBOW,
mp_pose.PoseLandmark.LEFT_WRIST,
mp_pose.PoseLandmark.RIGHT_WRIST,
mp_pose.PoseLandmark.LEFT_HIP,
mp_pose.PoseLandmark.RIGHT_HIP,
mp_pose.PoseLandmark.LEFT_KNEE,
mp_pose.PoseLandmark.RIGHT_KNEE,
mp_pose.PoseLandmark.LEFT_ANKLE,
mp_pose.PoseLandmark.RIGHT_ANKLE
]
POSE_CONNECTIONS = [(6, 4), (4, 2), (2, 13), (13, 1), (5, 3), (3, 1), (12, 10),
(10, 8), (8, 2), (11, 9), (9, 7), (7, 1), (13, 0)]
POINT_COLORS = [(0, 255, 255), (0, 191, 255), (0, 255, 102), (0, 77, 255), (0, 255, 0), # Nose, LEye, REye, LEar, REar
(77, 255, 255), (77, 255, 204), (77, 204, 255), (191, 255, 77), (77, 191, 255), (191, 255, 77), # LShoulder, RShoulder, LElbow, RElbow, LWrist, RWrist
(204, 77, 255), (77, 255, 204), (191, 77, 255), (77, 255, 191), (127, 77, 255), (77, 255, 127), (0, 255, 255)] # LHip, RHip, LKnee, Rknee, LAnkle, RAnkle, Neck
LINE_COLORS = [(0, 215, 255), (0, 255, 204), (0, 134, 255), (0, 255, 50), (77, 255, 222),
(77, 196, 255), (77, 135, 255), (191, 255, 77), (77, 255, 77), (77, 222, 255),
(255, 156, 127), (0, 127, 255), (255, 127, 77), (0, 77, 255), (255, 77, 36)]
POSE_MAPPING = ["站着","走着","坐着","躺下","站起来","坐下","摔倒"]
POSE_MAPPING_COLOR = [
(255,255,240),( 245,222,179),(244,164,96),( 210,180,140),
(255,127,80),(255,165,79),( 255,48,48)
]
# 为了检测动作的准确度,每30帧进行一次检测
ACTION_MODEL_MAX_FRAMES = 30
class FallDetection:
def __init__(self):
self.action_model = STGCN(weight_file='./weights/tsstg-model.pth', device='cpu')
self.joints_list = deque(maxlen=ACTION_MODEL_MAX_FRAMES)
def draw_skeleton(self, frame, pts):
l_pair = POSE_CONNECTIONS
p_color = POINT_COLORS
line_color = LINE_COLORS
part_line =
pts = np.concatenate((pts, np.expand_dims((pts[1, :] + pts[2, :]) / 2, 0)), axis=0)
for n in range(pts.shape[0]):
if pts[n, 2] <= 0.05:
continue
cor_x, cor_y = int(pts[n, 0]), int(pts[n, 1])
part_line[n] = (cor_x, cor_y)
cv2.circle(frame, (cor_x, cor_y), 3, p_color[n], -1)
# cv2.putText(frame, str(n), (cor_x+10, cor_y+10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 1)
for i, (start_p, end_p) in enumerate(l_pair):
if start_p in part_line and end_p in part_line:
start_xy = part_line[start_p]
end_xy = part_line[end_p]
cv2.line(frame, start_xy, end_xy, line_color[i], int(1*(pts[start_p, 2] + pts[end_p, 2]) + 3))
return frame
def cv2_add_chinese_text(self, img, text, position, textColor=(0, 255, 0), textSize=30):
if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式,opencv不支持中文,需要指定字体
fontStyle = ImageFont.truetype(
"./fonts/MSYH.ttc", textSize, encoding="utf-8")
draw.text(position, text, textColor, font=fontStyle)
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
def detect(self):
cap = cv2.VideoCapture(0)
# cap.set(3, 540)
# cap.set(4, 960)
# cap.set(5,30)
image_h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
image_w = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
frame_num = 0
print(image_h, image_w)
with mp_pose.Pose(
min_detection_confidence=0.7,
min_tracking_confidence=0.5) as pose:
while cap.isOpened():
fps_time = time.time()
frame_num += 1
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
# 提高性能,这里是做那个姿态的一个推理
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image)
if results.pose_landmarks:
# 识别骨骼点
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
landmarks = results.pose_landmarks.landmark
joints = np.array([[landmarks[joint].x * image_w,
landmarks[joint].y * image_h,
landmarks[joint].visibility]
for joint in KEY_JOINTS])
# 人体框
box_l, box_r = int(joints[:, 0].min())-50, int(joints[:, 0].max())+50
box_t, box_b = int(joints[:, 1].min())-100, int(joints[:, 1].max())+100
self.joints_list.append(joints)
# 识别动作
action = ''
clr = (0, 255, 0)
# 30帧数据预测动作类型
if len(self.joints_list) == ACTION_MODEL_MAX_FRAMES:
pts = np.array(self.joints_list, dtype=np.float32)
out = self.action_model.predict(pts, (image_w, image_h))
#
index = out[0].argmax()
action_name = POSE_MAPPING[index]
cls = POSE_MAPPING_COLOR[index]
action = ': :.2f%'.format(action_name, out[0].max() * 100)
print(action)
# 绘制骨骼点和动作类别
image = self.draw_skeleton(image, self.joints_list[-1])
image = cv2.rectangle(image, (box_l, box_t), (box_r, box_b), (255, 0, 0), 1)
image = self.cv2_add_chinese_text(image, f'当前状态:action', (box_l + 10, box_t + 10), clr, 40)
else:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image = cv2.putText(image, f'FPS: int(1.0 / (time.time() - fps_time))',
(50, 50), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2)
cv2.imshow('Pose', image)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
FallDetection().detect()
stgcn 姿态评估
首先的话,他这个时空图神经网络,我是没有研究过的,这玩意就是啥呢,就是把pose传入然后一通运算,然后就可以得到一个动作以及所属类别,也就是说这玩意是一个分类的图网络。这部分的话我不是很熟悉,这是我的盲区,所以我这里就把这个当作黑盒处理了。那么同样的这部分代码也是直接在Github上面cv过来,然后集成到这个项目里面。
是的,算法的运用开发和我们正常的开发其实区别不大,重新训练任务只是调参,适当调整网络模型,以及训练数据即可,颠覆性的改动=重新设计算法。
这部分代码并不多,我就直接贴出来了:
按顺序从上到下
import torch
import torch.nn as nn
import torch.nn.functional as F
from stgcn.Utils import Graph
class GraphConvolution(nn.Module):
"""The basic module for applying a graph convolution.
Args:
- in_channel: (int) Number of channels in the input sequence data.
- out_channels: (int) Number of channels produced by the convolution.
- kernel_size: (int) Size of the graph convolving kernel.
- t_kernel_size: (int) Size of the temporal convolving kernel.
- t_stride: (int, optional) Stride of the temporal convolution. Default: 1
- t_padding: (int, optional) Temporal zero-padding added to both sides of
the input. Default: 0
- t_dilation: (int, optional) Spacing between temporal kernel elements. Default: 1
- bias: (bool, optional) If `True`, adds a learnable bias to the output.
Default: `True`
Shape:
- Inputs x: Graph sequence in :math:`(N, in_channels, T_in, V)`,
A: Graph adjacency matrix in :math:`(K, V, V)`,
- Output: Graph sequence out in :math:`(N, out_channels, T_out, V)`
where
:math:`N` is a batch size,
:math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
:math:`T_in/T_out` is a length of input/output sequence,
:math:`V` is the number of graph nodes.
"""
def __init__(self, in_channels, out_channels, kernel_size,
t_kernel_size=1,
t_stride=1,
t_padding=0,
t_dilation=1,
bias=True):
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv2d(in_channels,
out_channels * kernel_size,
kernel_size=(t_kernel_size, 1),
padding=(t_padding, 0),
stride=(t_stride, 1),
dilation=(t_dilation, 1),
bias=bias)
def forward(self, x, A):
x = self.conv(x)
n, kc, t, v = x.size()
x = x.view(n, self.kernel_size, kc//self.kernel_size, t, v)
x = torch.einsum('nkctv,kvw->nctw', (x, A))
return x.contiguous()
class st_gcn(nn.Module):
"""Applies a spatial temporal graph convolution over an input graph sequence.
Args:
- in_channels: (int) Number of channels in the input sequence data.
- out_channels: (int) Number of channels produced by the convolution.
- kernel_size: (tuple) Size of the temporal convolving kernel and
graph convolving kernel.
- stride: (int, optional) Stride of the temporal convolution. Default: 1
- dropout: (int, optional) Dropout rate of the final output. Default: 0
- residual: (bool, optional) If `True`, applies a residual mechanism.
Default: `True`
Shape:
- Inputs x: Graph sequence in :math: `(N, in_channels, T_in, V)`,
A: Graph Adjecency matrix in :math: `(K, V, V)`,
- Output: Graph sequence out in :math: `(N, out_channels, T_out, V)`
where
:math:`N` is a batch size,
:math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
:math:`T_in/T_out` is a length of input/output sequence,
:math:`V` is the number of graph nodes.
"""
def __init__(self, in_channels, out_channels, kernel_size,
stride=1,
dropout=0,
residual=True):
super().__init__()
assert len(kernel_size) == 2
assert kernel_size[0] % 2 == 1
padding = ((kernel_size[0] - 1) // 2, 0)
self.gcn = GraphConvolution(in_channels, out_channels, kernel_size[1])
self.tcn = nn.Sequential(nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels,
out_channels,
(kernel_size[0], 1),
以上是关于MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)的主要内容,如果未能解决你的问题,请参考以下文章
从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型