通俗易懂的JUC源码剖析-ThreadPoolExecutor
Posted 小强大人
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了通俗易懂的JUC源码剖析-ThreadPoolExecutor相关的知识,希望对你有一定的参考价值。
前言
ThreadPoolExecutor相信大家都很熟悉:线程池的实现类。今天我们就来看看它内部是怎么实现的。
实现原理
先来看看它的类结构:
public class ThreadPoolExecutor extends AbstractExecutorService {
}
public abstract class AbstractExecutorService implements ExecutorService {
}
public interface ExecutorService extends Executor {
void shutdown();
<T> Future<T> submit(Callable<T> task);
// ...
}
public interface Executor {
void execute(Runnable command);
}
再来看看它的关键属性:
// ctl高3位表示线程池的运行状态,低29位表示线程个数
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 线程个数掩码,Integer位数-3,与具体平台Integer位数有关,大部分是32-3=29
private static final int COUNT_BITS = Integer.SIZE - 3;
// 线程最大个数
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
// 线程池状态
// 运行中:接受新任务并处理阻塞队列里的任务
private static final int RUNNING = -1 << COUNT_BITS;
// 关闭状态:拒绝新任务但会继续处理阻塞队列里的任务
// 调用shutdown()方法会变成这个状态
private static final int SHUTDOWN = 0 << COUNT_BITS;
// 停止状态:拒绝新任务并且会丢弃阻塞队列里的任务,同时还会中止正在运行的任务
// 调用shutdownNow()方法会变成这个状态
private static final int STOP = 1 << COUNT_BITS;
// 清洁状态:所有任务都执行完(包括阻塞队列里的任务),活动线程个数为0,将要调用terminated方法
private static final int TIDYING = 2 << COUNT_BITS;
// 终止状态:调用完terminated方法后的状态
private static final int TERMINATED = 3 << COUNT_BITS;
// 互斥锁,用来控制新增Worker操作的原子性
private final ReentrantLock mainLock = new ReentrantLock();
// 工作线程集合
private final HashSet<Worker> workers = new HashSet<Worker>();
// 线程池终止条件
private final Condition termination = mainLock.newCondition();
// 线程池核心参数
// 阻塞队列
private final BlockingQueue<Runnable> workQueue;
// 线程工厂
private volatile ThreadFactory threadFactory;
// 拒绝策略
private volatile RejectedExecutionHandler handler;
// 线程闲置时长
private volatile long keepAliveTime;
// 核心线程数
private volatile int corePoolSize;
// 最大线程数
private volatile int maximumPoolSize;
// 默认拒绝策略:AbortPolicy抛出异常
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
获取线程池状态和线程个数方法:
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
Worker是它的内部类,代表工作线程。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable {
Worker(Runnable firstTask) {
// 先设置state为-1,目前是为了调用runWorker()前禁止中断
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 创建一个线程,当前Worker实例作为Runnable接口实现
// addWorker()里调用t.start()时,会调用Worker的runWorker()方法
this.thread = getThreadFactory().newThread(this);
}
}
它继承了AQS,实现了Runnable接口
再来看关键方法:
execute()
public void execute(Runnable command) {
// 任务不能为空
if (command == null)
throw new NullPointerException();
// 获取代表线程池状态和线程个数的控制变量ctl
int c = ctl.get();
// 1.当前线程个数小于核心线程数时,尝试创建一个新的核心线程来执行任务
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 2.当前线程个数大于核心线程数且线程池正在运行时,尝试将任务放入到阻塞队列中
if (isRunning(c) && workQueue.offer(command)) {
// 二次检查
int recheck = ctl.get();
// 线程池不处于运行状态时,则从队列中移除任务,并执行拒绝策略
if (!isRunning(recheck) && remove(command))
reject(command);
// 如果当前线程池为空(没有工作线程),则创建一个非核心线程
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 3.阻塞队列满了,且未达到最大线程数时,则创建新的非核心线程来执行任务
// 4.阻塞队列满了,且超过最大线程数时,采用拒绝策略来拒绝任务
else if (!addWorker(command, false))
reject(command);
}
其中addWorker()方法如下:
// core变量代表待添加的是否为核心线程
private boolean addWorker(Runnable firstTask, boolean core) {
// goto语句块
retry:
// 无限循环
for (;;) {
int c = ctl.get();
// 获取线程池运行状态
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// 只在必要时检查队列是否为空,在下文单独讲解这块代码
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
!workQueue.isEmpty()))
return false;
for (;;) {
// 获取当前线程个数
int wc = workerCountOf(c);
// 超出个数现在则返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// CAS操作尝试增加线程个数的值workerCount
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 重新读取ctl变量的值,如果线程池运行状态发生变化,
// 跳到retry重新读取新的状态并重试CAS操作
if (runStateOf(c) != rs)
continue retry;
// 如果只是线程个数发生变化,说明只是CAS操作失败,继续内层循环重试CAS
// else CAS failed due to workerCount change; retry inner loop
}
}
// 到这里说明结束循环,CAS操作成功
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 创建一个新的工作线程Worker
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if // shut down before lock acquired.
// 重新检查线程池运行状态,因为可能在获取锁之前别的线程调用了shutdown方法
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// 将新创建的工作线程加入集合中,在加锁环境中完成
workers.add(w);
int s = workers.size();
// 更新largestPoolSize的值
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
// 工作线程添加成功,则启动线程
t.start();
workerStarted = true;
}
}
} finally {
// 线程未能启动,处理添加工作线程的逻辑
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
!workQueue.isEmpty()))
来单独分析下这块代码,将!(a & b & c)展开可以得到:
rs != SHUTDOWN || (1)
firstTask != null || (2)
workQueue.isEmpty() (3)
也就是,以下三种情况addWorker()会直接返回false,不添加新的工作线程
(1)线程池状态rs > SHUTDOWN,即STOP、TIYDING、TERMINATED的一种
(2)线程池状态为SHUTDOWN,并且已经有了第一个任务
(3)线程池状态为SHUTDOWN,并且阻塞队列为空
任务提交到线程池后,就交给Worker来执行了。Worker实现了Runable接口,来看看它的run()方法:
public void run() {
runWorker(this);
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
// 设置state为0,允许中断
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 循环从任务队列拉取任务getTask()
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
// 触发钩子,任务执行前逻辑
// 它是一个抽象方法,即允许我们自定义线程池来实现钩子方法
beforeExecute(wt, task);
Throwable thrown = null;
try {
// 执行目标任务
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
// 任务执行后逻辑
afterExecute(task, thrown);
}
} finally {
task = null;
// 统计当前Worker执行了多少任务
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 执行worker清理工作
processWorkerExit(w, completedAbruptly);
}
}
processWorkerExit()方法如下:
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly) // If abrupt, then workerCount wasn\'t adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 将当前Worker完成的任务数增加到全局统计变量completedTaskCount
completedTaskCount += w.completedTasks;
// 从工作线程集合中移除当前线程
workers.remove(w);
} finally {
mainLock.unlock();
}
// 以下2种情况会尝试将线程池状态置为terminated
// 1.线程池状态为SHUTDOWN,且阻塞队列任务为空
// 2.线程池状态为STOP,且当前活动线程个数为0
tryTerminate();
// 如果当前活动线程数小于核心线程数,则增加一个工作线程
int c = ctl.get();
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}
其中getTask()方法如下:
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 拉取超时,非核心线程退出
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
// 非核心线程限时拉取
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
// 核心线程阻塞拉取
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
shutdown()方法:
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(SHUTDOWN);
interruptIdleWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
tryTerminate();
}
shutdownNow()方法:
public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(STOP);
interruptWorkers();
tasks = drainQueue();
} finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
}
还有一些细节明天再分析吧~ 祝大家新年快乐,牛气冲天!
以上是关于通俗易懂的JUC源码剖析-ThreadPoolExecutor的主要内容,如果未能解决你的问题,请参考以下文章
通俗易懂的JUC源码剖析-LinkedBlockingQueue
通俗易懂的JUC源码剖析-ArrayBlockingQueue