elasticsearch基础—— 复合聚合
Posted 一曲广陵散
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了elasticsearch基础—— 复合聚合相关的知识,希望对你有一定的参考价值。
一、参考
elasticsearch 学习系列目录——更新ing
Composite aggregation
Composite aggregation ORDER BY
二、产生原因
当有多层聚合需要时候,使用composite
聚合,可以更好的分页
三、sources
类型
sources
参数中定义了,复合聚合的组成源数据
测试数据
GET kibana_sample_data_logs/_search
{
"size": 1
}
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "kibana_sample_data_logs",
"_type" : "_doc",
"_id" : "4O9NX3kBTG9UhPTpZasD",
"_score" : 1.0,
"_source" : {
"agent" : "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)",
"bytes" : 7525,
"clientip" : "60.103.76.51",
"extension" : "css",
"geo" : {
"srcdest" : "IN:TW",
"src" : "IN",
"dest" : "TW",
"coordinates" : {
"lat" : 35.23199833,
"lon" : -102.3990931
}
},
"host" : "cdn.elastic-elastic-elastic.org",
"index" : "kibana_sample_data_logs",
"ip" : "60.103.76.51",
"machine" : {
"ram" : 2147483648,
"os" : "ios"
},
"memory" : null,
"message" : "60.103.76.51 - - [2018-08-10T10:14:00.227Z] \\"GET /styles/ads.css HTTP/1.1\\" 200 7525 \\"-\\" \\"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)\\"",
"phpmemory" : null,
"referer" : "http://twitter.com/success/sandra-magnus",
"request" : "/styles/ads.css",
"response" : 200,
"tags" : [
"success",
"security"
],
"timestamp" : "2021-05-21T10:14:00.227Z",
"url" : "https://cdn.elastic-elastic-elastic.org/styles/ads.css",
"utc_time" : "2021-05-21T10:14:00.227Z",
"event" : {
"dataset" : "sample_web_logs"
}
}
}
]
}
}
3.1 terms
普通的terms
聚合
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"aggs1": {
"terms": {
"field": "clientip",
"size": 3
}
}
}
}
{
"took" : 14,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggs1" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 13919,
"buckets" : [
{
"key" : "30.156.16.164",
"doc_count" : 100
},
{
"key" : "164.85.94.243",
"doc_count" : 29
},
{
"key" : "50.184.59.162",
"doc_count" : 26
}
]
}
}
}
composite
聚合中的terms
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"aggs1": {
"composite": {
"size": 3,
"sources": [
{
"clientipAggs": {
"terms": {
"field": "clientip",
"order": "asc"
}
}
}
]
}
}
}
}
{
"took" : 6,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggs1" : {
"after_key" : {
"clientipAggs" : "0.209.144.101"
},
"buckets" : [
{
"key" : {
"clientipAggs" : "0.72.176.46"
},
"doc_count" : 14
},
{
"key" : {
"clientipAggs" : "0.207.229.147"
},
"doc_count" : 11
},
{
"key" : {
"clientipAggs" : "0.209.144.101"
},
"doc_count" : 14
}
]
}
}
}
3.2 histogram
普通的histogram
聚合
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"aggs1": {
"histogram": {
"field": "bytes",
"interval": 5000
}
}
}
}
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggs1" : {
"buckets" : [
{
"key" : 0.0,
"doc_count" : 6377
},
{
"key" : 5000.0,
"doc_count" : 6995
},
{
"key" : 10000.0,
"doc_count" : 375
},
{
"key" : 15000.0,
"doc_count" : 327
}
]
}
}
}
composite
聚合中的histogram
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"aggs1": {
"composite": {
"sources": [
{
"bytesAggs": {
"histogram": {
"field": "bytes",
"interval": 5000
}
}
}
]
}
}
}
}
{
"took" : 19,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggs1" : {
"after_key" : {
"bytesAggs" : 15000.0
},
"buckets" : [
{
"key" : {
"bytesAggs" : 0.0
},
"doc_count" : 6377
},
{
"key" : {
"bytesAggs" : 5000.0
},
"doc_count" : 6995
},
{
"key" : {
"bytesAggs" : 10000.0
},
"doc_count" : 375
},
{
"key" : {
"bytesAggs" : 15000.0
},
"doc_count" : 327
}
]
}
}
}
3.3 date_histogram
普通的时间聚合
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"aggs1": {
"date_histogram": {
"field": "timestamp",
"interval": "1M"
}
}
}
}
{
"took" : 5,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggs1" : {
"buckets" : [
{
"key_as_string" : "2021-05-01T00:00:00.000Z",
"key" : 1619827200000,
"doc_count" : 6926
},
{
"key_as_string" : "2021-06-01T00:00:00.000Z",
"key" : 1622505600000,
"doc_count" : 6943
},
{
"key_as_string" : "2021-07-01T00:00:00.000Z",
"key" : 1625097600000,
"doc_count" : 205
}
]
}
}
}
composite
中的date_histogram
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"aggs1": {
"composite": {
"sources": [
{
"dateAggs": {
"date_histogram": {
"field": "timestamp",
"interval": "1M"
}
}
}
]
}
}
}
}
{
"took" : 28,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggs1" : {
"after_key" : {
"dateAggs" : 1625097600000
},
"buckets" : [
{
"key" : {
"dateAggs" : 1619827200000
},
"doc_count" : 6926
},
{
"key" : {
"dateAggs" : 1622505600000
},
"doc_count" : 6943
},
{
"key" : {
"dateAggs" : 1625097600000
},
"doc_count" : 205
}
]
}
}
}
3.4 地理位置
3.5 多种混合
普通的混合
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"aggs1": {
"terms": {
"field": "clientip",
"size": 3
}
},
"aggs2": {
"date_histogram": {
"field": "timestamp",
"interval": "month"
}
}
}
}
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggs2" : {
"buckets" : [
{
"key_as_string" : "2021-05-01T00:00:00.000Z",
"key" : 1619827200000,
"doc_count" : 6926
},
{
"key_as_string" : "2021-06-01T00:00:00.000Z",
"key" : 1622505600000,
"doc_count" : 6943
},
{
"key_as_string" : "2021-07-01T00:00:00.000Z",
"key" : 1625097600000,
"doc_count" : 205
}
]
},
"aggs1" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 13919,
"buckets" : [
{
"key" : "30.156.16.164",
"doc_count" : 100
},
{
"key" : "164.85.94.243",
"doc_count" : 29
},
{
"key" : "50.184.59.162",
"doc_count" : 26
}
]
}
}
}
composite
中的混合source
GET kibana_sample_data_logs/_search
{
"size": 0,
"aggs": {
"aggs1": {
"composite": {
"size": 3,
"sources": [
{
"clientipAggs": {
"terms": {
"field": "clientip"
}
}
},
{
"dateAggs": {
"date_histogram": {
"field": "timestamp",
"interval": "month"
}
}
}
]
}
}
}
}
{
"took" : 6,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggs1" : {
"after_key" : {
"clientipAggs" : "0.207.229.147",
"dateAggs" : 1619827200000
},
"buckets" : [
{
"key" : {
"clientipAggs" : "0.72.176.46",
"dateAggs" : 1619827200000
},
"doc_count" : 6
},
{
"key" : {
"clientipAggs" : "0.72.176.46",
"dateAggs" : 1622505600000
},
"doc_count" : 8
},
{
"key" : {
"clientipAggs" : "0.207.229.147",
"dateAggs" : 1619827200000
},
"doc_count" : 6
}
]
}
}
}
四、排序
4.1 source
只有一个元素
如上,如果sources
参数只有一个terms: clientip
, 排序只能是对应的field: clientip
的顺序
注意: 无法根据terms: clientip
的_count
来排序
4.2 source
有多个元素
如果sources
参数有多个元素,例如:
terms: clientip
和 date_histogram: timestamp
, 排序为先按照field: clientip
, 然后按照field: timestamp
排序
五、分页
使用参数, size
和after_key
实现分页功能
六、子聚合
同普通的bucket
聚合一样,composite
聚合可以包含子聚合
七、pipeline 聚合
目前, composite
聚合和pipeline
聚合不兼容,无法一起使用
八、提前优化
可以在索引阶段指定sort
, 查询时候排序将更有效
以上是关于elasticsearch基础—— 复合聚合的主要内容,如果未能解决你的问题,请参考以下文章
具有 after_key 和 size 的 ElasticSearch 复合聚合
Elasticsearch全文检索技术 一篇文章即可从入门到精通(Elasticsearch安装,安装kibana,安装ik分词器,数据的增删改查,全文检索查询,聚合aggregations)(代码片