View工作原理
Posted 张庚
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了View工作原理相关的知识,希望对你有一定的参考价值。
在自定义View的时候,掌握View的底层工作原理,也就是:View的measure、Layout、draw流程,可以帮助我做出比较有意思的自定义View。
因此,本文主要讲解:
View的工作原理,其中包括:测量流程、布局流程、绘制流程。
其中包括如下内容:
- 基础知识准备:
- 认识ViewRoot和DecorView
- 理解MeasureSpec
- MeasureSpec和LayoutParams的关系
- View工作流程源码分析:
- Measure过程源码分析
- View的Measure过程
- ViewGroup的Measure过程
- Layout过程源码分析
- draw过程源码分析
- Measure过程源码分析
- 常用的几种自定义控件方式
1.基础知识准备
1.1 认识ViewRoot和DecorView
1.1.1 认识ViewRoot
ViewRoot
对应于ViewRootImpl
类,它是连接WindowManager和DecorView的纽带,View的三大流程都是通过ViewRoot完成的。在ActivityThread中,当Activity对象被创建完毕后,会将DecorView添加到Window中,同时会创建ViewRootImpl对象,并将ViewRootImpl对象和DecorView建立关联,源码如下:
root = new ViewRootImpl(view.getContext(), display);
root.setView(view, wparams, panelParentView);
View的绘制流程是从ViewRoot的performTraversals
方法开始的,它经过Measure、Layout和draw三个过程才能最终将一个View绘制出来。
1.1.2 认识DecorView
DecorView
作为顶级View,包含一个竖直方向的LinearLayout布局,这个Linearlayout布局包括两部分:上面的标题栏,下面的内容栏。我们在Activity中通过setContentView所设置的布局文件其实就是被加到了内容栏之中的。DecorView其实是一个FrameLayout,View层的事件都先经过DecorView,然后才传递给我们的View。
1.2 理解MeasureSpec
MeasureSpec是什么呢?
MeasureSpec简单说是:测量规格。往细的说:MeasureSpec很大程度上决定了一个View的尺寸规格,之所以说是很大程度上是因为这个过程还受父容器的影响,因为父容器影响View的MeasureSpec的创建过程。在测量过程中,系统会将View的LayoutParams根据父容器所施加的规则转换为对应的MeasureSpec,然后再根据这个MeasureSpec来测量出View的宽、高。
MeasureSpec的组成:
MeasureSpec代表一个32位int值。
高2位代表:SpecMode。SpecMode代表测量模式
。
低30位代表:SpecSize。SpecSize代表在某种测量模式下的规格大小
下面看看MeasureSpec的源码:
public static class MeasureSpec
private static final int MODE_SHIFT = 30;
private static final int MODE_MASK = 0x3 << MODE_SHIFT;
/**
* Measure specification mode: The parent has not imposed any constraint
* on the child. It can be whatever size it wants.
*/
public static final int UNSPECIFIED = 0 << MODE_SHIFT;
/**
* Measure specification mode: The parent has determined an exact size
* for the child. The child is going to be given those bounds regardless
* of how big it wants to be.
*/
public static final int EXACTLY = 1 << MODE_SHIFT;
/**
* Measure specification mode: The child can be as large as it wants up
* to the specified size.
*/
public static final int AT_MOST = 2 << MODE_SHIFT;
/**
* Creates a measure specification based on the supplied size and mode.
*
* The mode must always be one of the following:
* <ul>
* <li>@link android.view.View.MeasureSpec#UNSPECIFIED</li>
* <li>@link android.view.View.MeasureSpec#EXACTLY</li>
* <li>@link android.view.View.MeasureSpec#AT_MOST</li>
* </ul>
*
* <p><strong>Note:</strong> On API level 17 and lower, makeMeasureSpec's
* implementation was such that the order of arguments did not matter
* and overflow in either value could impact the resulting MeasureSpec.
* @link android.widget.RelativeLayout was affected by this bug.
* Apps targeting API levels greater than 17 will get the fixed, more strict
* behavior.</p>
*
* @param size the size of the measure specification
* @param mode the mode of the measure specification
* @return the measure specification based on size and mode
*/
public static int makeMeasureSpec(@IntRange(from = 0, to = (1 << MeasureSpec.MODE_SHIFT) - 1) int size,
@MeasureSpecMode int mode)
if (sUseBrokenMakeMeasureSpec)
return size + mode;
else
return (size & ~MODE_MASK) | (mode & MODE_MASK);
/**
* Like @link #makeMeasureSpec(int, int), but any spec with a mode of UNSPECIFIED
* will automatically get a size of 0. Older apps expect this.
*
* @hide internal use only for compatibility with system widgets and older apps
*/
public static int makeSafeMeasureSpec(int size, int mode)
if (sUseZeroUnspecifiedMeasureSpec && mode == UNSPECIFIED)
return 0;
return makeMeasureSpec(size, mode);
/**
* Extracts the mode from the supplied measure specification.
*
* @param measureSpec the measure specification to extract the mode from
* @return @link android.view.View.MeasureSpec#UNSPECIFIED,
* @link android.view.View.MeasureSpec#AT_MOST or
* @link android.view.View.MeasureSpec#EXACTLY
*/
@MeasureSpecMode
public static int getMode(int measureSpec)
//noinspection ResourceType
return (measureSpec & MODE_MASK);
/**
* Extracts the size from the supplied measure specification.
*
* @param measureSpec the measure specification to extract the size from
* @return the size in pixels defined in the supplied measure specification
*/
public static int getSize(int measureSpec)
return (measureSpec & ~MODE_MASK);
......
MeasureSpec通过将SpecMode和SpecSize打包成一个int值来避免过多的对象内存分配,为了方便操作,提供了打包和解包方法。
makeMeasureSpec
可以根据SpecMode和SpecSize打包出对应的MeasureSpec。getMode
和getSize
可以从MeasureSpec解包出对应的SpecMode和SpecSize。
SpecMode的有三类:
UNSPECIFIED
父容器不对View有任何限制,要多大给多大,这种情况一般用于系统内部,表示一种测量的状态。
EXACTLY
父容器已经检测出View所需要的精确大小。这个时候View的最终大小就是SpecSize指定的值。它对应LayoutParams中的match_parent和具体的数值这两种模式。
- AT_MOST:
父容器指定了一个可用大小即:SpecSize,View的大小不能大于这个值,具体是什么值要看不同的View具体实现。它对应于LayoutParams中的wrap_content。
1.3 MeasureSpec和LayoutParams的关系
对于顶级View:DecorView来说:
其MeasureSpec由窗口的尺寸和其自身的LayoutParams来共同确定。
对于普通View来说:
其MeasureSpec由父容器的MeasureSpec和自身的LayoutParams来共同决定,MeasureSpec一旦确定后,onMeasure中就可以确定View的测量宽高。
下面看一个源码分析:
对于DecorView来说,在ViewRootImpl的measureHierarchy方法中有一段代码,展示了DecorView的MeasureSpec创建过程:
childWidthMeasureSpec = getRootMeasureSpec(desiredWindowWidth, lp.width);
childHeightMeasureSpec = getRootMeasureSpec(desiredWindowHeight, lp.height);
performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
其中的desiredWindowWidth,desiredWindowHeight是屏幕的尺寸。
接着在看下getRootMeasureSpec方法:
private static int getRootMeasureSpec(int windowSize, int rootDimension)
int measureSpec;
switch (rootDimension)
case ViewGroup.LayoutParams.MATCH_PARENT:
// Window can't resize. Force root view to be windowSize.
measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
break;
case ViewGroup.LayoutParams.WRAP_CONTENT:
// Window can resize. Set max size for root view.
measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);
break;
default:
// Window wants to be an exact size. Force root view to be that size.
measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);
break;
return measureSpec;
从上面的代码可以看出:
DecorView的MeasureSpec产生过程遵从如下规则:
- LayoutParams.MATCH_PARENT:精确模式,大小就是窗口大小。
- LayoutParams.WRAP_CONENT:最大模式,大小不变,但是不能超过窗口的大小。
- 固定大小:精确模式,大小为LayoutParams中指定的大小。
对于普通View来说:View的Measure过程由ViewGroup传递而来,先看一下ViewGroup的measureChildWithMargins方法:
protected void measureChildWithMargins(View child,
int parentWidthMeasureSpec, int widthUsed,
int parentHeightMeasureSpec, int heightUsed)
final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
+ widthUsed, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
+ heightUsed, lp.height);
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
从上面的代码可以看出,对子元素进行Measure,在调用子元素的Measure方法之前会先通过getChildMeasureSpec方法来得到子元素的MeasureSpec。由此可以看出,子元素的MeasureSpec的创建与父容器的MeasureSpec和子元素本身的LayoutParams有关,此外还和View的margin及padding有关。
那getChildMeasureSpec又是如何来获得子元素的MeasureSpec的呢?上代码:
public static int getChildMeasureSpec(int spec, int padding, int childDimension)
int specMode = MeasureSpec.getMode(spec);
int specSize = MeasureSpec.getSize(spec);
int size = Math.max(0, specSize - padding);
int resultSize = 0;
int resultMode = 0;
switch (specMode)
// Parent has imposed an exact size on us
case MeasureSpec.EXACTLY:
if (childDimension >= 0)
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
else if (childDimension == LayoutParams.MATCH_PARENT)
// Child wants to be our size. So be it.
resultSize = size;
resultMode = MeasureSpec.EXACTLY;
else if (childDimension == LayoutParams.WRAP_CONTENT)
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
break;
// Parent has imposed a maximum size on us
case MeasureSpec.AT_MOST:
if (childDimension >= 0)
// Child wants a specific size... so be it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
else if (childDimension == LayoutParams.MATCH_PARENT)
// Child wants to be our size, but our size is not fixed.
// Constrain child to not be bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
else if (childDimension == LayoutParams.WRAP_CONTENT)
// Child wants to determine its own size. It can't be
// bigger than us.
resultSize = size;
resultMode = MeasureSpec.AT_MOST;
break;
// Parent asked to see how big we want to be
case MeasureSpec.UNSPECIFIED:
if (childDimension >= 0)
// Child wants a specific size... let him have it
resultSize = childDimension;
resultMode = MeasureSpec.EXACTLY;
else if (childDimension == LayoutParams.MATCH_PARENT)
// Child wants to be our size... find out how big it should
// be
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
else if (childDimension == LayoutParams.WRAP_CONTENT)
// Child wants to determine its own size.... find out how
// big it should be
resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
resultMode = MeasureSpec.UNSPECIFIED;
break;
//noinspection ResourceType
return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
从上面的代码可以看出,它的主要作用是根据父容器的MeasureSpec同时结合View本身的LayoutParams来确定子元素的MeasureSpec,参数中的padding是指父容器中已占用的空间,因此子元素可用的大小为父容器的尺寸减去padding。代码如下:
int specSize = MeasureSpec.getSize(spec);
int size = Math.max(0, specSize - padding);
总的来说:
只要提供父容器的MeasureSpec和子元素的LayoutParams,就可以快速地确定子元素的MeasureSpec了,有了MeasureSpec就可以进一步确定出子元素测量后的大小了。
2 View工作流程源码分析
整体工作流程简介:
View的工作流程主要是指Measure、Layout、draw这三个流程,即:测量、布局、绘制,其中Measure确定view的宽、高,Layout确定View的最终宽高和四个顶点的位置,draw则将View绘制到屏幕上。
2.1 Measure过程源码分析
measure过程要分情况来看,如果是原始View,Measure方法就完成了其测量过程;如果是一个ViewGroup,除了完成自己的测量过程之外,还会遍历去调用所有子元素的Measure方法,各个子元素再递归去执行这个流程。
2.1.1 View的Measure过程分析
View的measure过程由其measure方法来完成,measure方法是一个final方法,在View的measure方法中回去调用View的onMeasure方法,因此需要看看onMeasure的实现,代码如下:
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec)
setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
setMeasuredDimension方法会设置View宽高的测量值,因此需要看看getDefaultSize方法,代码如下:
/**
* Utility to return a default size. Uses the supplied size if the
* MeasureSpec imposed no constraints. Will get larger if allowed
* by the MeasureSpec.
*
* @param size Default size for this view
* @param measureSpec Constraints imposed by the parent
* @return The size this view should be.
*/
public static int getDefaultSize(int size, int measureSpec)
int result = size;
int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);
switch (specMode)
case MeasureSpec.UNSPECIFIED:
result = size;
break;
case MeasureSpec.AT_MOST:
case MeasureSpec.EXACTLY:
result = specSize;
break;
return result;
从getDefaultSize的方法可以看出:
- 在AT_MOST和EXACTLY时,getDefaultSize返回的大小就是measureSpec的SpecSize,而这个SpecSize就是View测量后的大小。
- UNSPECIFIED是,一般用于系统内部的测量过程,这时View的大小为getDefaultSize的第一个参数size,即宽高分别为getSuggestedMinimumWindth和getSuggestedMinimumHeight这两个方法的返回值。
源码如下:
protected int getSuggestedMinimumWidth()
return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());
protected int getSuggestedMinimumHeight()
return (mBackground == null) ? mMinHeight : max(mMinHeight, mBackground.getMinimumHeight());
可以看出getSuggestedMinimumWidth的逻辑是这样的:
如果View没有设置背景,那么返回android:minWidth这个属性所指定的值,这个值可以为0;如果View设置了背景,则返回android:minWidth和背景的最小宽度两者中的最大值,getSuggestedMinimumWidth和getSuggestedMinimumHeight的返回值就是View在UNSPECIFIED情况下的测量宽、高。
从getDefaultSize方法的实现看,View的宽高由specSize决定,可以得出如下结论:
直接继承View的自定义控件需要重写onMeasure方法并设置wrap_content时的自身大小,否则在布局中使用wrap_content就相当于使用match_parent。
2.1.2 ViewGroup的Measure过程分析
对ViewGroup来说,除了完成自己的measure过程之外,还会遍历去调用子元素的measure方法,各个子元素再递归去执行这个过程。和View不同的是,ViewGroup是一个抽象类,因此它没有重写View的onMeasure方法,但是它提供了一个叫做measureChildren的方法,如下所示:
/**
* Ask all of the children of this view to measure themselves, taking into
* account both the MeasureSpec requirements for this view and its padding.
* We skip children that are in the GONE state The heavy lifting is done in
* getChildMeasureSpec.
*
* @param widthMeasureSpec The width requirements for this view
* @param heightMeasureSpec The height requirements for this view
*/
protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec)
final int size = mChildrenCount;
final View[] children = mChildren;
for (int i = 0; i < size; ++i)
final View child = children[i];
if ((child.mViewFlags & VISIBILITY_MASK) != GONE)
measureChild(child, widthMeasureSpec, heightMeasureSpec);
从上面的代码可以看到,ViewGroup在Measure时,会对每一个子元素进行measure,measureChild这个方法的实现也很好理解,代码如下:
/**
* Ask one of the children of this view to measure itself, taking into
* account both the MeasureSpec requirements for this view and its padding.
* The heavy lifting is done in getChildMeasureSpec.
*
* @param child The child to measure
* @param parentWidthMeasureSpec The width requirements for this view
* @param parentHeightMeasureSpec The height requirements for this view
*/
protected void measureChild(View child, int parentWidthMeasureSpec,
int parentHeightMeasureSpec)
final LayoutParams lp = child.getLayoutParams();
final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight, lp.width);
final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom, lp.height);
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
上述方法的目的就是,取出子元素的LayoutParams,然后再通过getChildMeasureSpec来创建子元素的MeasureSpec,接着将MeasureSpec直接传递给View的measure方法来进行测量。
ViewGroup并没有定义其测量的具体过程,因为ViewGroup是一个抽象类,其测量过程的onMeasure方法需要各个子类去具体实现。因为不同的布局,测量细节不同,ViewGroup无法统一实现。下面以Linearlayout的onMeasure方法来分析ViewGroup的measure过程。
首先看看LinearLayout的onMeasure方法,代码如下:
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec)
if (mOrientation == VERTICAL)
measureVertical(widthMeasureSpec, heightMeasureSpec);
else
measureHorizontal(widthMeasureSpec, heightMeasureSpec);
以measureVertical方法为例,源码如下:
/**
* Measures the children when the orientation of this LinearLayout is set
* to @link #VERTICAL.
*
* @param widthMeasureSpec Horizontal space requirements as imposed by the parent.
* @param heightMeasureSpec Vertical space requirements as imposed by the parent.
*
* @see #getOrientation()
* @see #setOrientation(int)
* @see #onMeasure(int, int)
*/
void measureVertical(int widthMeasureSpec, int heightMeasureSpec)
mTotalLength = 0;
int maxWidth = 0;
int childState = 0;
int alternativeMaxWidth = 0;
int weightedMaxWidth = 0;
boolean allFillParent = true;
float totalWeight = 0;
final int count = getVirtualChildCount();
final int widthMode = MeasureSpec.getMode(widthMeasureSpec);
final int heightMode = MeasureSpec.getMode(heightMeasureSpec);
boolean matchWidth = false;
boolean skippedMeasure = false;
final int baselineChildIndex = mBaselineAlignedChildIndex;
final boolean useLargestChild = mUseLargestChild;
int largestChildHeight = Integer.MIN_VALUE;
int consumedExcessSpace = 0;
// See how tall everyone is. Also remember max width.
for (int i = 0; i < count; ++i)
final View child = getVirtualChildAt(i);
if (child == null)
mTotalLength += measureNullChild(i);
continue;
if (child.getVisibility() == View.GONE)
i += getChildrenSkipCount(child, i);
continue;
if (hasDividerBeforeChildAt(i))
mTotalLength += mDividerHeight;
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
totalWeight += lp.weight;
final boolean useExcessSpace = lp.height == 0 && lp.weight > 0;
if (heightMode == MeasureSpec.EXACTLY && useExcessSpace)
// Optimization: don't bother measuring children who are only
// laid out using excess space. These views will get measured
// later if we have space to distribute.
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
skippedMeasure = true;
else
if (useExcessSpace)
// The heightMode is either UNSPECIFIED or AT_MOST, and
// this child is only laid out using excess space. Measure
// using WRAP_CONTENT so that we can find out the view's
// optimal height. We'll restore the original height of 0
// after measurement.
lp.height = LayoutParams.WRAP_CONTENT;
// Determine how big this child would like to be. If this or
// previous children have given a weight, then we allow it to
// use all available space (and we will shrink things later
// if needed).
final int usedHeight = totalWeight == 0 ? mTotalLength : 0;
measureChildBeforeLayout(child, i, widthMeasureSpec, 0,
heightMeasureSpec, usedHeight);
final int childHeight = child.getMeasuredHeight();
if (useExcessSpace)
// Restore the original height and record how much space
// we've allocated to excess-only children so that we can
// match the behavior of EXACTLY measurement.
lp.height = 0;
consumedExcessSpace += childHeight;
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin +
lp.bottomMargin + getNextLocationOffset(child));
if (useLargestChild)
largestChildHeight = Math.max(childHeight, largestChildHeight);
/**
* If applicable, compute the additional offset to the child's baseline
* we'll need later when asked @link #getBaseline.
*/
if ((baselineChildIndex >= 0) && (baselineChildIndex == i + 1))
mBaselineChildTop = mTotalLength;
// if we are trying to use a child index for our baseline, the above
// book keeping only works if there are no children above it with
// weight. fail fast to aid the developer.
if (i < baselineChildIndex && lp.weight > 0)
throw new RuntimeException("A child of LinearLayout with index "
+ "less than mBaselineAlignedChildIndex has weight > 0, which "
+ "won't work. Either remove the weight, or don't set "
+ "mBaselineAlignedChildIndex.");
boolean matchWidthLocally = false;
if (widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT)
// The width of the linear layout will scale, and at least one
// child said it wanted to match our width. Set a flag
// indicating that we need to remeasure at least that view when
// we know our width.
matchWidth = true;
matchWidthLocally = true;
final int margin = lp.leftMargin + lp.rightMargin;
final int measuredWidth = child.getMeasuredWidth() + margin;
maxWidth = Math.max(maxWidth, measuredWidth);
childState = combineMeasuredStates(childState, child.getMeasuredState());
allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;
if (lp.weight > 0)
/*
* Widths of weighted Views are bogus if we end up
* remeasuring, so keep them separate.
*/
weightedMaxWidth = Math.max(weightedMaxWidth,
matchWidthLocally ? margin : measuredWidth);
else
alternativeMaxWidth = Math.max(alternativeMaxWidth,
matchWidthLocally ? margin : measuredWidth);
i += getChildrenSkipCount(child, i);
if (mTotalLength > 0 && hasDividerBeforeChildAt(count))
mTotalLength += mDividerHeight;
if (useLargestChild &&
(heightMode == MeasureSpec.AT_MOST || heightMode == MeasureSpec.UNSPECIFIED))
mTotalLength = 0;
for (int i = 0; i < count; ++i)
final View child = getVirtualChildAt(i);
if (child == null)
mTotalLength += measureNullChild(i);
continue;
if (child.getVisibility() == GONE)
i += getChildrenSkipCount(child, i);
continue;
final LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams)
child.getLayoutParams();
// Account for negative margins
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + largestChildHeight +
lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
// Add in our padding
mTotalLength += mPaddingTop + mPaddingBottom;
int heightSize = mTotalLength;
// Check against our minimum height
heightSize = Math.max(heightSize, getSuggestedMinimumHeight());
// Reconcile our calculated size with the heightMeasureSpec
int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0);
heightSize = heightSizeAndState & MEASURED_SIZE_MASK;
// Either expand children with weight to take up available space or
// shrink them if they extend beyond our current bounds. If we skipped
// measurement on any children, we need to measure them now.
int remainingExcess = heightSize - mTotalLength
+ (mAllowInconsistentMeasurement ? 0 : consumedExcessSpace);
if (skippedMeasure || remainingExcess != 0 && totalWeight > 0.0f)
float remainingWeightSum = mWeightSum > 0.0f ? mWeightSum : totalWeight;
mTotalLength = 0;
for (int i = 0; i < count; ++i)
final View child = getVirtualChildAt(i);
if (child == null || child.getVisibility() == View.GONE)
continue;
final LayoutParams lp = (LayoutParams) child.getLayoutParams();
final float childWeight = lp.weight;
if (childWeight > 0)
final int share = (int) (childWeight * remainingExcess / remainingWeightSum);
remainingExcess -= share;
remainingWeightSum -= childWeight;
final int childHeight;
if (mUseLargestChild && heightMode != MeasureSpec.EXACTLY)
childHeight = largestChildHeight;
else if (lp.height == 0 && (!mAllowInconsistentMeasurement
|| heightMode == MeasureSpec.EXACTLY))
// This child needs to be laid out from scratch using
// only its share of excess space.
childHeight = share;
else
// This child had some intrinsic height to which we
// need to add its share of excess space.
childHeight = child.getMeasuredHeight() + share;
final int childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(
Math.max(0, childHeight), MeasureSpec.EXACTLY);
final int childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin,
lp.width);
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
// Child may now not fit in vertical dimension.
childState = combineMeasuredStates(childState, child.getMeasuredState()
& (MEASURED_STATE_MASK>>MEASURED_HEIGHT_STATE_SHIFT));
final int margin = lp.leftMargin + lp.rightMargin;
final int measuredWidth = child.getMeasuredWidth() + margin;
maxWidth = Math.max(maxWidth, measuredWidth);
boolean matchWidthLocally = widthMode != MeasureSpec.EXACTLY &&
lp.width == LayoutParams.MATCH_PARENT;
alternativeMaxWidth = Math.max(alternativeMaxWidth,
matchWidthLocally ? margin : measuredWidth);
allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + child.getMeasuredHeight() +
lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
// Add in our padding
mTotalLength += mPaddingTop + mPaddingBottom;
// TODO: Should we recompute the heightSpec based on the new total length?
else
alternativeMaxWidth = Math.max(alternativeMaxWidth,
weightedMaxWidth);
// We have no limit, so make all weighted views as tall as the largest child.
// Children will have already been measured once.
if (useLargestChild && heightMode != MeasureSpec.EXACTLY)
for (int i = 0; i < count; i++)
final View child = getVirtualChildAt(i);
if (child == null || child.getVisibility() == View.GONE)
continue;
final LinearLayout.LayoutParams lp =
(LinearLayout.LayoutParams) child.getLayoutParams();
float childExtra = lp.weight;
if (childExtra > 0)
child.measure(
MeasureSpec.makeMeasureSpec(child.getMeasuredWidth(),
MeasureSpec.EXACTLY),
MeasureSpec.makeMeasureSpec(largestChildHeight,
MeasureSpec.EXACTLY));
if (!allFillParent && widthMode != MeasureSpec.EXACTLY)
maxWidth = alternativeMaxWidth;
maxWidth += mPaddingLeft + mPaddingRight;
// Check against our minimum width
maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());
setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
heightSizeAndState);
if (matchWidth)
forceUniformWidth(count, heightMeasureSpec);
从源码可以看出,系统会遍历子元素并对每个子元素执行measureChildBeoreLayout方法,这个方法内部会调用子元素的measure方法,这样各个子元素就开始依次进入measure过程,并且系统会通过mTotalLength这个变量来存储LinearLayout在竖直方向的初步高度。每测量一个子元素,mTotalLength就会增加,增加的部分主要包括子元素的高度以及子元素在竖直方向上的margin等。当子元素测量完毕后,LinearLayout会测量自己的大小。
针对竖直的LinearLayout而言,在水平方向的测量过程遵循View的测量过程,在竖直方向的测量过程则和View有所不同。
在View的Measure过程完成以后,通过getMeasuredWidth/Height方法就可以正确的获取到View的测量宽、高。
2.2 Layout过程源码分析
Layout的作用是ViewGroup用来确定子元素的位置,当ViewGroup的位置被确定后,它在onLayout中会遍历所有的子元素并调用其layout方法,在layout方法中onLayout方法又会被调用。layout方法确定View本身的位置,而onLayout方法则会确定所有子元素的位置。
先看看View的layout方法,代码如下:
public void layout(int l, int t, int r, int b)
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0)
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight;
boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);
if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED)
onLayout(changed, l, t, r, b);
if (shouldDrawRoundScrollbar())
if(mRoundScrollbarRenderer == null)
mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);
else
mRoundScrollbarRenderer = null;
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null)
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i)
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
layout方法的大致流程如下:
1. 首先通过setFrame方法来设定View的四个顶点的位置,即初始化mLeft、mRight、mTop和mBottom这四个值,View的四个顶点一旦确定,那么View在父容器中的位置也就确定了。
2. 接着调用onLayout方法,这样父容器就可以确定子元素的位置。
接下来看看onLayout方法,代码如下:
protected void onLayout(boolean changed, int left, int top, int right, int bottom)
可以看到方法是个空方法,View和ViewGroup均没有真正实现onLayout方法,需要具体的View和ViewGroup去实现。我们看看Linearlayout的该方法:
@Override
protected void onLayout(boolean changed, int l, int t, int r, int b)
if (mOrientation == VERTICAL)
layoutVertical(l, t, r, b);
else
layoutHorizontal(l, t, r, b);
依然后vertical和horizontal两个分支,我们选择Vertical这个分支来阅读。代码如下:
/**
* Position the children during a layout pass if the orientation of this
* LinearLayout is set to @link #VERTICAL.
*
* @see #getOrientation()
* @see #setOrientation(int)
* @see #onLayout(boolean, int, int, int, int)
* @param left
* @param top
* @param right
* @param bottom
*/
void layoutVertical(int left, int top, int right, int bottom)
final int paddingLeft = mPaddingLeft;
int childTop;
int childLeft;
// Where right end of child should go
final int width = right - left;
int childRight = width - mPaddingRight;
// Space available for child
int childSpace = width - paddingLeft - mPaddingRight;
final int count = getVirtualChildCount();
final int majorGravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK;
final int minorGravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK;
switch (majorGravity)
case Gravity.BOTTOM:
// mTotalLength contains the padding already
childTop = mPaddingTop + bottom - top - mTotalLength;
break;
// mTotalLength contains the padding already
case Gravity.CENTER_VERTICAL:
childTop = mPaddingTop + (bottom - top - mTotalLength) / 2;
break;
case Gravity.TOP:
default:
childTop = mPaddingTop;
break;
for (int i = 0; i < count; i++)
final View child = getVirtualChildAt(i);
if (child == null)
childTop += measureNullChild(i);
else if (child.getVisibility() != GONE)
final int childWidth = child.getMeasuredWidth();
final int childHeight = child.getMeasuredHeight();
final LinearLayout.LayoutParams lp =
(LinearLayout.LayoutParams) child.getLayoutParams();
int gravity = lp.gravity;
if (gravity < 0)
gravity = minorGravity;
final int layoutDirection = getLayoutDirection();
final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK)
case Gravity.CENTER_HORIZONTAL:
以上是关于View工作原理的主要内容,如果未能解决你的问题,请参考以下文章